Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila.

Identifieur interne : 000B22 ( Main/Corpus ); précédent : 000B21; suivant : 000B23

Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila.

Auteurs : Jianbo Li ; Huixia Jia ; Xiaojiao Han ; Jin Zhang ; Pei Sun ; Mengzhu Lu ; Jianjun Hu

Source :

RBID : pubmed:27761137

Abstract

Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila.

DOI: 10.3389/fpls.2016.01505
PubMed: 27761137
PubMed Central: PMC5050224

Links to Exploration step

pubmed:27761137

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow,
<i>Salix psammophila</i>
.</title>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiaojiao" sort="Han, Xiaojiao" uniqKey="Han X" first="Xiaojiao" last="Han">Xiaojiao Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27761137</idno>
<idno type="pmid">27761137</idno>
<idno type="doi">10.3389/fpls.2016.01505</idno>
<idno type="pmc">PMC5050224</idno>
<idno type="wicri:Area/Main/Corpus">000B22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow,
<i>Salix psammophila</i>
.</title>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Xiaojiao" sort="Han, Xiaojiao" uniqKey="Han X" first="Xiaojiao" last="Han">Xiaojiao Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Salix psammophila</i>
is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover,
<i>S. psammophila</i>
is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in
<i>S. psammophila</i>
until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were
<i>EF1</i>
α (
<i>Elongation factor-1 alpha</i>
) and
<i>OTU</i>
(
<i>OTU-like cysteine protease family protein</i>
) for different tissue types,
<i>UBC</i>
(
<i>Ubiquitin-conjugating enzyme E2</i>
) and
<i>LTA4H</i>
(
<i>Leukotriene A-4 hydrolase homolog</i>
) for heat treatment,
<i>HIS</i>
(
<i>Histone superfamily protein H3</i>
) and
<i>ARF2</i>
(
<i>ADP-ribosylation factor 2</i>
) for cold treatment,
<i>OTU</i>
and
<i>ACT7</i>
(
<i>Actin 7</i>
) for salt treatment,
<i>UBC</i>
and
<i>LTA4H</i>
for drought treatment. The expression of
<i>UBC</i>
,
<i>ARF2</i>
, and
<i>VHAC</i>
(
<i>V-type proton ATPase subunit C</i>
) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene
<i>WOX1a</i>
(
<i>WUSCHEL-related homeobox 1a</i>
), and four stress-inducible genes, including
<i>Hsf-A2</i>
(
<i>Heat shock transcription factors A2</i>
),
<i>CBF3</i>
(
<i>C-repeat binding factor 3</i>
),
<i>HKT1</i>
(
<i>High-Affinity K
<sup>+</sup>
Transporter 1</i>
), and
<i>GST</i>
(
<i>Glutathione S-transferase</i>
), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in
<i>S. psammophila</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27761137</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow,
<i>Salix psammophila</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1505</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>
<i>Salix psammophila</i>
is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover,
<i>S. psammophila</i>
is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in
<i>S. psammophila</i>
until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were
<i>EF1</i>
α (
<i>Elongation factor-1 alpha</i>
) and
<i>OTU</i>
(
<i>OTU-like cysteine protease family protein</i>
) for different tissue types,
<i>UBC</i>
(
<i>Ubiquitin-conjugating enzyme E2</i>
) and
<i>LTA4H</i>
(
<i>Leukotriene A-4 hydrolase homolog</i>
) for heat treatment,
<i>HIS</i>
(
<i>Histone superfamily protein H3</i>
) and
<i>ARF2</i>
(
<i>ADP-ribosylation factor 2</i>
) for cold treatment,
<i>OTU</i>
and
<i>ACT7</i>
(
<i>Actin 7</i>
) for salt treatment,
<i>UBC</i>
and
<i>LTA4H</i>
for drought treatment. The expression of
<i>UBC</i>
,
<i>ARF2</i>
, and
<i>VHAC</i>
(
<i>V-type proton ATPase subunit C</i>
) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene
<i>WOX1a</i>
(
<i>WUSCHEL-related homeobox 1a</i>
), and four stress-inducible genes, including
<i>Hsf-A2</i>
(
<i>Heat shock transcription factors A2</i>
),
<i>CBF3</i>
(
<i>C-repeat binding factor 3</i>
),
<i>HKT1</i>
(
<i>High-Affinity K
<sup>+</sup>
Transporter 1</i>
), and
<i>GST</i>
(
<i>Glutathione S-transferase</i>
), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in
<i>S. psammophila</i>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiaojiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jianjun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salix psammophila</Keyword>
<Keyword MajorTopicYN="N">abiotic stresses</Keyword>
<Keyword MajorTopicYN="N">quantitative real-time PCR</Keyword>
<Keyword MajorTopicYN="N">reference genes</Keyword>
<Keyword MajorTopicYN="N">tissue types</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27761137</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.01505</ArticleId>
<ArticleId IdType="pmc">PMC5050224</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 25;7:529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 09;7:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Feb 06;10 (2):e0117569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25658122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Nov;56(421):2907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2016 Jan 15;576(1 Pt 3):520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26541063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 16;6:748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Aug;25(8):2907-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 08;10(9):e0136343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26348924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Feb;8(2):131-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 23;313(4):856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Nov 07;8:112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Oct;41(10):6555-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24993115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2011 Nov 28;4:518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Dec 02;5:17587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26625868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Dec 22;8:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19102748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 03;7:1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27536316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Dec 13;2(6):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Feb 19;10:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(3):1559-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 16;8(12):e83041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24358246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Feb;38(2):957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 14;6:23036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jan 07;10:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 21;15:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2006 Feb;209(Pt 4):577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16449553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 09;14(4):7660-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23571493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 28;9(2):e90612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 May 29;149(5):1087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2004 Mar;26(6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Feb;53(2):405-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2005 Jun;34(3):597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):519-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Aug 14;5:4636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25119965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 21;7:516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jun 30;345(2):646-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1736-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Dec;155(4):446-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2016 Feb;178(3):433-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Oct;15(10):988-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Nov;152(3):529-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24720378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 22;500(7463):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23969459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Aug;20(4):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 May;227(6):1343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 25;7:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 27;9(1):e87197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24475250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):1000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0118678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25798897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pestic Biochem Physiol. 2016 Feb;127:59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26821659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2000 Nov 20;46(1-2):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2002 Aug;29(1):23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Aug 15;547(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24914494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 27;6:19748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26813576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 2):S25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10673222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27761137
   |texte=   Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27761137" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020