Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

Identifieur interne : 000923 ( Main/Corpus ); précédent : 000922; suivant : 000924

Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.

Auteurs : Lauge Peter Westergaard Clausen ; Mette Martina Broholm ; Ulrich Gosewinkel ; Stefan Trapp

Source :

RBID : pubmed:28639018

English descriptors

Abstract

Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

DOI: 10.1007/s11356-017-9420-8
PubMed: 28639018

Links to Exploration step

pubmed:28639018

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.</title>
<author>
<name sortKey="Clausen, Lauge Peter Westergaard" sort="Clausen, Lauge Peter Westergaard" uniqKey="Clausen L" first="Lauge Peter Westergaard" last="Clausen">Lauge Peter Westergaard Clausen</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. lpwc@env.dtu.dk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Broholm, Mette Martina" sort="Broholm, Mette Martina" uniqKey="Broholm M" first="Mette Martina" last="Broholm">Mette Martina Broholm</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gosewinkel, Ulrich" sort="Gosewinkel, Ulrich" uniqKey="Gosewinkel U" first="Ulrich" last="Gosewinkel">Ulrich Gosewinkel</name>
<affiliation>
<nlm:affiliation>Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trapp, Stefan" sort="Trapp, Stefan" uniqKey="Trapp S" first="Stefan" last="Trapp">Stefan Trapp</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. sttr@env.dtu.dk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28639018</idno>
<idno type="pmid">28639018</idno>
<idno type="doi">10.1007/s11356-017-9420-8</idno>
<idno type="wicri:Area/Main/Corpus">000923</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000923</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.</title>
<author>
<name sortKey="Clausen, Lauge Peter Westergaard" sort="Clausen, Lauge Peter Westergaard" uniqKey="Clausen L" first="Lauge Peter Westergaard" last="Clausen">Lauge Peter Westergaard Clausen</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. lpwc@env.dtu.dk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Broholm, Mette Martina" sort="Broholm, Mette Martina" uniqKey="Broholm M" first="Mette Martina" last="Broholm">Mette Martina Broholm</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gosewinkel, Ulrich" sort="Gosewinkel, Ulrich" uniqKey="Gosewinkel U" first="Ulrich" last="Gosewinkel">Ulrich Gosewinkel</name>
<affiliation>
<nlm:affiliation>Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trapp, Stefan" sort="Trapp, Stefan" uniqKey="Trapp S" first="Stefan" last="Trapp">Stefan Trapp</name>
<affiliation>
<nlm:affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. sttr@env.dtu.dk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Burkholderia cepacia (growth & development)</term>
<term>Hydroponics (MeSH)</term>
<term>Salix (growth & development)</term>
<term>Salix (metabolism)</term>
<term>Salix (microbiology)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Trees (growth & development)</term>
<term>Trees (metabolism)</term>
<term>Trees (microbiology)</term>
<term>Trichloroethylene (analysis)</term>
<term>Trichloroethylene (metabolism)</term>
<term>Trichloroethylene (toxicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Burkholderia cepacia</term>
<term>Salix</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Salix</term>
<term>Soil Pollutants</term>
<term>Trees</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Salix</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Soil Pollutants</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Hydroponics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28639018</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.</ArticleTitle>
<Pagination>
<MedlinePgn>18320-18331</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-017-9420-8</ELocationID>
<Abstract>
<AbstractText>Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2-3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Clausen</LastName>
<ForeName>Lauge Peter Westergaard</ForeName>
<Initials>LPW</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. lpwc@env.dtu.dk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broholm</LastName>
<ForeName>Mette Martina</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gosewinkel</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trapp</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet bygning 115, 2800, Kgs Lyngby, Denmark. sttr@env.dtu.dk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>290YE8AR51</RegistryNumber>
<NameOfSubstance UI="D014241">Trichloroethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016956" MajorTopicYN="N">Burkholderia cepacia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018527" MajorTopicYN="N">Hydroponics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014241" MajorTopicYN="N">Trichloroethylene</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">B. cepacia</Keyword>
<Keyword MajorTopicYN="N">Chloride</Keyword>
<Keyword MajorTopicYN="N">Dehalogenation</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">TCE degradation</Keyword>
<Keyword MajorTopicYN="N">Trichloroethylene</Keyword>
<Keyword MajorTopicYN="N">Willow tree toxicity test</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28639018</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-017-9420-8</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-017-9420-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Phytoremediation. 2015;17(1-6):369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Feb 15;42(4):1268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18351104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2004 Oct;30(8):1119-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Apr;54(4):951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 May;59(8):1099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Aug-Sep;157(8-9):2564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2014 Jul;60(7):487-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2010 Aug;17(7):1355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2008 May;54(4):619-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 May;56(5):1279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2339883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2013 Feb;20(2):834-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23089954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Dec;58(7):1055-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11730869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2007 Jun;26(6):1165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17571681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2006 Aug 1;40(15):4788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 May;22(5):583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2004 Jan;54(3):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2000 Aug;39(2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10871417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2007 May-Jun;9(3):243-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2006 Sep;25(9):2455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16986801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Apr 1;39(7):2135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15871248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2016;18(7):686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26684839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Apr;20(2):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19327979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2001 Feb;20(2):389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Jul 10;29(27):6419-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2207083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health. 1977 Jan;2(3):671-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">403297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Nov;63(11):4485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9361434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 1995 Jul 1;29(7):318A-23A</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22667744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2004 Jul;56(2):121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Mar 1;42(5):1711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441825</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000923 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000923 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28639018
   |texte=   Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28639018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020