Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.

Identifieur interne : 000558 ( Main/Corpus ); précédent : 000557; suivant : 000559

Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.

Auteurs : Lingyu Chi ; Ming Huang ; Annalise R. Pfaff ; Jie Huang ; Rex E. Gerald ; Klaus Woelk

Source :

RBID : pubmed:30599605

Abstract

With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently sealed by the arc discharge plasma of a commercially available fusion splicer normally employed for joining optical fibers. The permanently sealed capillaries can be used as external references for chemical-shift, signal-to-noise, resolution, and concentration calibration. Combining a number of permanently sealed capillaries to form CapPack devices leads to additional applications such as performance evaluation of NMR spectrometers and NMR pulse sequences. A 10-capillary-tube side-by-side Gradient CapPack device is used in combination with one or two constant gradients, produced by room-temperature shim coils, to monitor the excitation profiles of shaped pulses. One example illustrates the performance of hyperbolic secant (sech) pulses in the EXponentially Converging Eradication Pulse Train (EXCEPT) solvent suppression sequence. The excitation profile of the pulse sequence is obtained in a single gradient NMR experiment. A clustered T1 CapPack device is introduced consisting of a coaxial NMR-tube insert that holds seven capillary tubes filled with aqueous solutions of different concentrations of the paramagnetic relaxation agent copper(ii) sulfate (CuSO4). The different CuSO4 concentrations lead to spin-lattice relaxation times in the seven capillary tubes that cover a range which extends to more than an order of magnitude. Clustered T1 CapPack devices are best suited to quantify the effects that relaxation has on magnetizations and coherences during the execution of NMR experiments, which is demonstrated for the order-of-magnitude T1 insensitivity of signal suppression with EXCEPT.

DOI: 10.1063/1.5052374
PubMed: 30599605

Links to Exploration step

pubmed:30599605

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.</title>
<author>
<name sortKey="Chi, Lingyu" sort="Chi, Lingyu" uniqKey="Chi L" first="Lingyu" last="Chi">Lingyu Chi</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ming" sort="Huang, Ming" uniqKey="Huang M" first="Ming" last="Huang">Ming Huang</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfaff, Annalise R" sort="Pfaff, Annalise R" uniqKey="Pfaff A" first="Annalise R" last="Pfaff">Annalise R. Pfaff</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jie" sort="Huang, Jie" uniqKey="Huang J" first="Jie" last="Huang">Jie Huang</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 West 16th St., Rolla, Missouri 65409-0040, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerald, Rex E" sort="Gerald, Rex E" uniqKey="Gerald R" first="Rex E" last="Gerald">Rex E. Gerald</name>
<affiliation>
<nlm:affiliation>American Inventor Institute, 141 B Willows Edge Court, Willow Springs, Illinois 60480, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Woelk, Klaus" sort="Woelk, Klaus" uniqKey="Woelk K" first="Klaus" last="Woelk">Klaus Woelk</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30599605</idno>
<idno type="pmid">30599605</idno>
<idno type="doi">10.1063/1.5052374</idno>
<idno type="wicri:Area/Main/Corpus">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000558</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.</title>
<author>
<name sortKey="Chi, Lingyu" sort="Chi, Lingyu" uniqKey="Chi L" first="Lingyu" last="Chi">Lingyu Chi</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ming" sort="Huang, Ming" uniqKey="Huang M" first="Ming" last="Huang">Ming Huang</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfaff, Annalise R" sort="Pfaff, Annalise R" uniqKey="Pfaff A" first="Annalise R" last="Pfaff">Annalise R. Pfaff</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jie" sort="Huang, Jie" uniqKey="Huang J" first="Jie" last="Huang">Jie Huang</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 West 16th St., Rolla, Missouri 65409-0040, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerald, Rex E" sort="Gerald, Rex E" uniqKey="Gerald R" first="Rex E" last="Gerald">Rex E. Gerald</name>
<affiliation>
<nlm:affiliation>American Inventor Institute, 141 B Willows Edge Court, Willow Springs, Illinois 60480, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Woelk, Klaus" sort="Woelk, Klaus" uniqKey="Woelk K" first="Klaus" last="Woelk">Klaus Woelk</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Review of scientific instruments</title>
<idno type="eISSN">1089-7623</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150
<i>µ</i>
m as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360
<i>µ</i>
m are filled with reference liquids or solutions and then permanently sealed by the arc discharge plasma of a commercially available fusion splicer normally employed for joining optical fibers. The permanently sealed capillaries can be used as external references for chemical-shift, signal-to-noise, resolution, and concentration calibration. Combining a number of permanently sealed capillaries to form CapPack devices leads to additional applications such as performance evaluation of NMR spectrometers and NMR pulse sequences. A 10-capillary-tube side-by-side Gradient CapPack device is used in combination with one or two constant gradients, produced by room-temperature shim coils, to monitor the excitation profiles of shaped pulses. One example illustrates the performance of hyperbolic secant (sech) pulses in the EXponentially Converging Eradication Pulse Train (EXCEPT) solvent suppression sequence. The excitation profile of the pulse sequence is obtained in a single gradient NMR experiment. A clustered
<i>T</i>
<sub>1</sub>
CapPack device is introduced consisting of a coaxial NMR-tube insert that holds seven capillary tubes filled with aqueous solutions of different concentrations of the paramagnetic relaxation agent copper(ii) sulfate (CuSO
<sub>4</sub>
). The different CuSO
<sub>4</sub>
concentrations lead to spin-lattice relaxation times in the seven capillary tubes that cover a range which extends to more than an order of magnitude. Clustered
<i>T</i>
<sub>1</sub>
CapPack devices are best suited to quantify the effects that relaxation has on magnetizations and coherences during the execution of NMR experiments, which is demonstrated for the order-of-magnitude
<i>T</i>
<sub>1</sub>
insensitivity of signal suppression with EXCEPT.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30599605</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1089-7623</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The Review of scientific instruments</Title>
<ISOAbbreviation>Rev Sci Instrum</ISOAbbreviation>
</Journal>
<ArticleTitle>Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.</ArticleTitle>
<Pagination>
<MedlinePgn>123115</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1063/1.5052374</ELocationID>
<Abstract>
<AbstractText>With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150
<i>µ</i>
m as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360
<i>µ</i>
m are filled with reference liquids or solutions and then permanently sealed by the arc discharge plasma of a commercially available fusion splicer normally employed for joining optical fibers. The permanently sealed capillaries can be used as external references for chemical-shift, signal-to-noise, resolution, and concentration calibration. Combining a number of permanently sealed capillaries to form CapPack devices leads to additional applications such as performance evaluation of NMR spectrometers and NMR pulse sequences. A 10-capillary-tube side-by-side Gradient CapPack device is used in combination with one or two constant gradients, produced by room-temperature shim coils, to monitor the excitation profiles of shaped pulses. One example illustrates the performance of hyperbolic secant (sech) pulses in the EXponentially Converging Eradication Pulse Train (EXCEPT) solvent suppression sequence. The excitation profile of the pulse sequence is obtained in a single gradient NMR experiment. A clustered
<i>T</i>
<sub>1</sub>
CapPack device is introduced consisting of a coaxial NMR-tube insert that holds seven capillary tubes filled with aqueous solutions of different concentrations of the paramagnetic relaxation agent copper(ii) sulfate (CuSO
<sub>4</sub>
). The different CuSO
<sub>4</sub>
concentrations lead to spin-lattice relaxation times in the seven capillary tubes that cover a range which extends to more than an order of magnitude. Clustered
<i>T</i>
<sub>1</sub>
CapPack devices are best suited to quantify the effects that relaxation has on magnetizations and coherences during the execution of NMR experiments, which is demonstrated for the order-of-magnitude
<i>T</i>
<sub>1</sub>
insensitivity of signal suppression with EXCEPT.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chi</LastName>
<ForeName>Lingyu</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000000243329119</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pfaff</LastName>
<ForeName>Annalise R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000000286592910</Identifier>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 West 16th St., Rolla, Missouri 65409-0040, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerald</LastName>
<ForeName>Rex E</ForeName>
<Initials>RE</Initials>
<Suffix>2nd</Suffix>
<AffiliationInfo>
<Affiliation>American Inventor Institute, 141 B Willows Edge Court, Willow Springs, Illinois 60480, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woelk</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000000213865623</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Missouri University of Science and Technology, 400 West 11th St., Rolla, Missouri 65409-0010, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Rev Sci Instrum</MedlineTA>
<NlmUniqueID>0405571</NlmUniqueID>
<ISSNLinking>0034-6748</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30599605</ArticleId>
<ArticleId IdType="doi">10.1063/1.5052374</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000558 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000558 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30599605
   |texte=   Capillary-tube package devices for the quantitative performance evaluation of nuclear magnetic resonance spectrometers and pulse sequences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30599605" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020