Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.

Identifieur interne : 000399 ( Main/Corpus ); précédent : 000398; suivant : 000400

Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.

Auteurs : Huixia Jia ; Jin Zhang ; Jianbo Li ; Pei Sun ; Yahong Zhang ; Xuebing Xin ; Mengzhu Lu ; Jianjun Hu

Source :

RBID : pubmed:31416414

English descriptors

Abstract

BACKGROUND

Drought is a major environmental constraint to plant growth, development and productivity. Compared with most willows that are generally susceptible to drought, the desert willow Salix psammophila has extraordinary adaptation to drought stress. However, its molecular basis of drought tolerance is still largely unknown.

RESULTS

During polyethylene glycol 6000 (PEG 6000)-simulated drought stress, we found that the osmotic adjustment substances were accumulated and the antioxidant enzyme activities were enhanced in S. psammophila roots. A total of 8172 differentially expressed genes were identified in roots of S. psammophila through RNA-Sequencing. Based on K-means clustering, their expression patterns were classified into nine clusters, which were enriched in several stress-related processes including transcriptional regulation, response to various stresses, cell death, etc. Moreover, 672 transcription factors from 45 gene families were differentially expressed under drought stress. Furthermore, a weighted gene co-expression network was constructed, and eight genes were identified as hub genes. We demonstrated the function of two hub genes, magnesium-dependent phosphatase 1 (SpMDP1) and SpWRKY33, through overexpression in Arabidopsis thaliana. Overexpression of the two hub genes enhanced the drought tolerance in transgenic plants, suggesting that the identification of candidate drought tolerance genes in this study was highly efficient and credible.

CONCLUSIONS

Our study analyzed the physiological and molecular responses to drought stress in S. psammophila, and these results contribute to dissect the mechanism of drought tolerance of S. psammophila and facilitate identification of critical genes involved in drought tolerance for willow breeding.


DOI: 10.1186/s12870-019-1900-1
PubMed: 31416414
PubMed Central: PMC6694639

Links to Exploration step

pubmed:31416414

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.</title>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. zhangj1@ornl.gov.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. zhangj1@ornl.gov.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation>
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yahong" sort="Zhang, Yahong" uniqKey="Zhang Y" first="Yahong" last="Zhang">Yahong Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xin, Xuebing" sort="Xin, Xuebing" uniqKey="Xin X" first="Xuebing" last="Xin">Xuebing Xin</name>
<affiliation>
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. hujj@caf.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31416414</idno>
<idno type="pmid">31416414</idno>
<idno type="doi">10.1186/s12870-019-1900-1</idno>
<idno type="pmc">PMC6694639</idno>
<idno type="wicri:Area/Main/Corpus">000399</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000399</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.</title>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jin" sort="Zhang, Jin" uniqKey="Zhang J" first="Jin" last="Zhang">Jin Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. zhangj1@ornl.gov.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. zhangj1@ornl.gov.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation>
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yahong" sort="Zhang, Yahong" uniqKey="Zhang Y" first="Yahong" last="Zhang">Yahong Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xin, Xuebing" sort="Xin, Xuebing" uniqKey="Xin X" first="Xuebing" last="Xin">Xuebing Xin</name>
<affiliation>
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. hujj@caf.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Genes, Regulator (physiology)</term>
<term>Genome, Plant (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Salix (genetics)</term>
<term>Salix (physiology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Regulator</term>
<term>Genome, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Salix</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Drought is a major environmental constraint to plant growth, development and productivity. Compared with most willows that are generally susceptible to drought, the desert willow Salix psammophila has extraordinary adaptation to drought stress. However, its molecular basis of drought tolerance is still largely unknown.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>During polyethylene glycol 6000 (PEG 6000)-simulated drought stress, we found that the osmotic adjustment substances were accumulated and the antioxidant enzyme activities were enhanced in S. psammophila roots. A total of 8172 differentially expressed genes were identified in roots of S. psammophila through RNA-Sequencing. Based on K-means clustering, their expression patterns were classified into nine clusters, which were enriched in several stress-related processes including transcriptional regulation, response to various stresses, cell death, etc. Moreover, 672 transcription factors from 45 gene families were differentially expressed under drought stress. Furthermore, a weighted gene co-expression network was constructed, and eight genes were identified as hub genes. We demonstrated the function of two hub genes, magnesium-dependent phosphatase 1 (SpMDP1) and SpWRKY33, through overexpression in Arabidopsis thaliana. Overexpression of the two hub genes enhanced the drought tolerance in transgenic plants, suggesting that the identification of candidate drought tolerance genes in this study was highly efficient and credible.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our study analyzed the physiological and molecular responses to drought stress in S. psammophila, and these results contribute to dissect the mechanism of drought tolerance of S. psammophila and facilitate identification of critical genes involved in drought tolerance for willow breeding.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31416414</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>356</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-1900-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Drought is a major environmental constraint to plant growth, development and productivity. Compared with most willows that are generally susceptible to drought, the desert willow Salix psammophila has extraordinary adaptation to drought stress. However, its molecular basis of drought tolerance is still largely unknown.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">During polyethylene glycol 6000 (PEG 6000)-simulated drought stress, we found that the osmotic adjustment substances were accumulated and the antioxidant enzyme activities were enhanced in S. psammophila roots. A total of 8172 differentially expressed genes were identified in roots of S. psammophila through RNA-Sequencing. Based on K-means clustering, their expression patterns were classified into nine clusters, which were enriched in several stress-related processes including transcriptional regulation, response to various stresses, cell death, etc. Moreover, 672 transcription factors from 45 gene families were differentially expressed under drought stress. Furthermore, a weighted gene co-expression network was constructed, and eight genes were identified as hub genes. We demonstrated the function of two hub genes, magnesium-dependent phosphatase 1 (SpMDP1) and SpWRKY33, through overexpression in Arabidopsis thaliana. Overexpression of the two hub genes enhanced the drought tolerance in transgenic plants, suggesting that the identification of candidate drought tolerance genes in this study was highly efficient and credible.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our study analyzed the physiological and molecular responses to drought stress in S. psammophila, and these results contribute to dissect the mechanism of drought tolerance of S. psammophila and facilitate identification of critical genes involved in drought tolerance for willow breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. zhangj1@ornl.gov.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. zhangj1@ornl.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yahong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xin</LastName>
<ForeName>Xuebing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jianjun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. hujj@caf.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CAFYBB2017ZY008 and CAFYBB2018ZY001-9</GrantID>
<Agency>National Nonprofit Institute Research Grant of CAF</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31800570</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005809" MajorTopicYN="N">Genes, Regulator</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Co-expression network</Keyword>
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Hub gene</Keyword>
<Keyword MajorTopicYN="N">Salix psammophila</Keyword>
<Keyword MajorTopicYN="N">SpMDP1</Keyword>
<Keyword MajorTopicYN="N">SpWRKY33</Keyword>
<Keyword MajorTopicYN="N">Transgene</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31416414</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-1900-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-1900-1</ArticleId>
<ArticleId IdType="pmc">PMC6694639</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Oct;11(10):1925-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):27-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Oct 23;40(42):12704-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11601995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Dec;53(379):2401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1952 Mar;195(1):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14938361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Feb;110(3):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Feb;53(2):258-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Feb;57(2):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18378-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(4):592-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17059405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(2):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;355:317-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Mar;63(5):591-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17225073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Apr;20(4):420-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17427812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Aug;49(8):1135-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Mar;3(3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Mar;72(4-5):407-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19953304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Apr;9(3):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20809928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Feb;53(2):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3824-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):266-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22392279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Oct;195:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2014 Feb;35:1-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23107776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 1;165(2):688-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24784760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Sep 23;109:290-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 May;56(5):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25657343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Feb;8(2):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Apr 21;16:329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25895923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Aug;66(15):4567-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Oct 12;15:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26458893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Nov;27(11):3228-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26508764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Feb;28(2):345-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Oct;14(10):1956-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26923339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 May;86(3):249-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26991768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jun;86(6):530-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27062090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 22;6:31772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27546315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Oct 05;7:1505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27761137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Feb 1;58(2):307-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27837097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Oct;15(10):1295-1308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28244201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Sep;118:400-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28711789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 22;7(1):12188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28939837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Jul;16(7):1311-1321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29230937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformation. 2018 Mar 31;14(3):123-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29785071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000399 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000399 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31416414
   |texte=   Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31416414" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020