Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.

Identifieur interne : 000281 ( Main/Exploration ); précédent : 000280; suivant : 000282

Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.

Auteurs : Ryan K. Jones [États-Unis] ; Wenhao H. Sun ; Chung-Shih Tang ; Françoise M. Robert

Source :

RBID : pubmed:15506638

Descripteurs français

English descriptors

Abstract

GOAL, SCOPE AND BACKGROUND

The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil.

METHODS

The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates.

RESULTS AND DISCUSSION

All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs.

CONCLUSION

The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant.

RECOMMENDATIONS AND OUTLOOK

In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.


DOI: 10.1007/BF02979649
PubMed: 15506638


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.</title>
<author>
<name sortKey="Jones, Ryan K" sort="Jones, Ryan K" uniqKey="Jones R" first="Ryan K" last="Jones">Ryan K. Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Hawaii, 2538 The Mall, Snyder Hall 207, Honolulu, Hawaii 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Hawaii, 2538 The Mall, Snyder Hall 207, Honolulu, Hawaii 96822</wicri:regionArea>
<wicri:noRegion>Hawaii 96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Wenhao H" sort="Sun, Wenhao H" uniqKey="Sun W" first="Wenhao H" last="Sun">Wenhao H. Sun</name>
</author>
<author>
<name sortKey="Tang, Chung Shih" sort="Tang, Chung Shih" uniqKey="Tang C" first="Chung-Shih" last="Tang">Chung-Shih Tang</name>
</author>
<author>
<name sortKey="Robert, Francoise M" sort="Robert, Francoise M" uniqKey="Robert F" first="Françoise M" last="Robert">Françoise M. Robert</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15506638</idno>
<idno type="pmid">15506638</idno>
<idno type="doi">10.1007/BF02979649</idno>
<idno type="wicri:Area/Main/Corpus">000279</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000279</idno>
<idno type="wicri:Area/Main/Curation">000279</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000279</idno>
<idno type="wicri:Area/Main/Exploration">000279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.</title>
<author>
<name sortKey="Jones, Ryan K" sort="Jones, Ryan K" uniqKey="Jones R" first="Ryan K" last="Jones">Ryan K. Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Hawaii, 2538 The Mall, Snyder Hall 207, Honolulu, Hawaii 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Hawaii, 2538 The Mall, Snyder Hall 207, Honolulu, Hawaii 96822</wicri:regionArea>
<wicri:noRegion>Hawaii 96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Wenhao H" sort="Sun, Wenhao H" uniqKey="Sun W" first="Wenhao H" last="Sun">Wenhao H. Sun</name>
</author>
<author>
<name sortKey="Tang, Chung Shih" sort="Tang, Chung Shih" uniqKey="Tang C" first="Chung-Shih" last="Tang">Chung-Shih Tang</name>
</author>
<author>
<name sortKey="Robert, Francoise M" sort="Robert, Francoise M" uniqKey="Robert F" first="Françoise M" last="Robert">Françoise M. Robert</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="ISSN">0944-1344</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Environmental Pollution (prevention & control)</term>
<term>Hydrocarbons (isolation & purification)</term>
<term>Hydrocarbons (metabolism)</term>
<term>Petroleum (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (isolation & purification)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Tropical Climate (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Climat tropical (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Hydrocarbures (isolement et purification)</term>
<term>Hydrocarbures (métabolisme)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Polluants du sol (isolement et purification)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Pollution de l'environnement (prévention et contrôle)</term>
<term>Pétrole (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Hydrocarbons</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrocarbons</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Hydrocarbures</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hydrocarbures</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Environmental Pollution</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Pollution de l'environnement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Petroleum</term>
<term>Soil Microbiology</term>
<term>Tropical Climate</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Climat tropical</term>
<term>Dépollution biologique de l'environnement</term>
<term>Microbiologie du sol</term>
<term>Pétrole</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>GOAL, SCOPE AND BACKGROUND</b>
</p>
<p>The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS AND DISCUSSION</b>
</p>
<p>All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECOMMENDATIONS AND OUTLOOK</b>
</p>
<p>In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15506638</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0944-1344</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.</ArticleTitle>
<Pagination>
<MedlinePgn>340-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="GOAL, SCOPE AND BACKGROUND" NlmCategory="OBJECTIVE">The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates.</AbstractText>
<AbstractText Label="RESULTS AND DISCUSSION" NlmCategory="CONCLUSIONS">All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant.</AbstractText>
<AbstractText Label="RECOMMENDATIONS AND OUTLOOK" NlmCategory="CONCLUSIONS">In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Ryan K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Hawaii, 2538 The Mall, Snyder Hall 207, Honolulu, Hawaii 96822, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Wenhao H</ForeName>
<Initials>WH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Chung-Shih</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robert</LastName>
<ForeName>Françoise M</ForeName>
<Initials>FM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006838">Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010578">Petroleum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004787" MajorTopicYN="N">Environmental Pollution</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006838" MajorTopicYN="N">Hydrocarbons</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010578" MajorTopicYN="Y">Petroleum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014329" MajorTopicYN="Y">Tropical Climate</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15506638</ArticleId>
<ArticleId IdType="doi">10.1007/BF02979649</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2004;11(4):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Nov;53(11):2617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3426223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Dec;56(12):3895-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2002;9(1):4-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11885417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1965;19:241-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5318440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1996 Jul;33(2):203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8696773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Dec;68(12 ):6106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12450834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2000 Jan;40(1):11-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10665439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2004;6(1):17-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15224773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Nov-Dec;30(6):1911-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Mar-Apr;30(2):395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11285899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Aug;58(8):2579-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1514804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1941 May;41(5):653-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16560430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1978 May;24(5):522-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">350362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Oct;65(10):4646-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Robert, Francoise M" sort="Robert, Francoise M" uniqKey="Robert F" first="Françoise M" last="Robert">Françoise M. Robert</name>
<name sortKey="Sun, Wenhao H" sort="Sun, Wenhao H" uniqKey="Sun W" first="Wenhao H" last="Sun">Wenhao H. Sun</name>
<name sortKey="Tang, Chung Shih" sort="Tang, Chung Shih" uniqKey="Tang C" first="Chung-Shih" last="Tang">Chung-Shih Tang</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Jones, Ryan K" sort="Jones, Ryan K" uniqKey="Jones R" first="Ryan K" last="Jones">Ryan K. Jones</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15506638
   |texte=   Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15506638" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020