Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.

Auteurs : J M Coombs [États-Unis] ; T. Barkay

Source :

RBID : pubmed:16269744

Descripteurs français

English descriptors

Abstract

In order to examine the natural history of metal homeostasis genes in prokaryotes, open reading frames with homology to characterized P(IB)-type ATPases from the genomes of 188 bacteria and 22 archaea were investigated. Major findings were as follows. First, a high diversity in N-terminal metal binding motifs was observed. These motifs were distributed throughout bacterial and archaeal lineages, suggesting multiple loss and acquisition events. Second, the CopA locus separated into two distinct phylogenetic clusters, CopA1, which contained ATPases with documented Cu(I) influx activity, and CopA2, which contained both efflux and influx transporters and spanned the entire diversity of the bacterial domain, suggesting that CopA2 is the ancestral locus. Finally, phylogentic incongruences between 16S rRNA and P(IB)-type ATPase gene trees identified at least 14 instances of lateral gene transfer (LGT) that had occurred among diverse microbes. Results from bootstrapped supported nodes indicated that (i) a majority of the transfers occurred among proteobacteria, most likely due to the phylogenetic relatedness of these organisms, and (ii) gram-positive bacteria with low moles percent G+C were often involved in instances of LGT. These results, together with our earlier work on the occurrence of LGT in subsurface bacteria (J. M. Coombs and T. Barkay, Appl. Environ. Microbiol. 70:1698-1707, 2004), indicate that LGT has had a minor role in the evolution of P(IB)-type ATPases, unlike other genes that specify survival in metal-stressed environments. This study demonstrates how examination of a specific locus across microbial genomes can contribute to the understanding of phenotypes that are critical to the interactions of microbes with their environment.

DOI: 10.1128/AEM.71.11.7083-7091.2005
PubMed: 16269744
PubMed Central: PMC1287752


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.</title>
<author>
<name sortKey="Coombs, J M" sort="Coombs, J M" uniqKey="Coombs J" first="J M" last="Coombs">J M Coombs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA. coombs@adelphi.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901</wicri:regionArea>
<orgName type="university">Université Rutgers</orgName>
<placeName>
<settlement type="city">New Brunswick (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barkay, T" sort="Barkay, T" uniqKey="Barkay T" first="T" last="Barkay">T. Barkay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16269744</idno>
<idno type="pmid">16269744</idno>
<idno type="doi">10.1128/AEM.71.11.7083-7091.2005</idno>
<idno type="pmc">PMC1287752</idno>
<idno type="wicri:Area/Main/Corpus">000277</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000277</idno>
<idno type="wicri:Area/Main/Curation">000277</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000277</idno>
<idno type="wicri:Area/Main/Exploration">000277</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.</title>
<author>
<name sortKey="Coombs, J M" sort="Coombs, J M" uniqKey="Coombs J" first="J M" last="Coombs">J M Coombs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA. coombs@adelphi.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901</wicri:regionArea>
<orgName type="university">Université Rutgers</orgName>
<placeName>
<settlement type="city">New Brunswick (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barkay, T" sort="Barkay, T" uniqKey="Barkay T" first="T" last="Barkay">T. Barkay</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Archaea (genetics)</term>
<term>Archaea (metabolism)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (metabolism)</term>
<term>Cation Transport Proteins (genetics)</term>
<term>Copper-Transporting ATPases (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Genome, Archaeal (MeSH)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Metals (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenosine triphosphatases (génétique)</term>
<term>Archéobactéries (génétique)</term>
<term>Archéobactéries (métabolisme)</term>
<term>Bactéries (génétique)</term>
<term>Bactéries (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome bactérien (MeSH)</term>
<term>Génome d'archéobactérie (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Métaux (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Transporteurs de cations (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Cation Transport Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
<term>Metals</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Métaux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Copper-Transporting ATPases</term>
<term>Evolution, Molecular</term>
<term>Gene Transfer, Horizontal</term>
<term>Genome, Archaeal</term>
<term>Genome, Bacterial</term>
<term>Genomics</term>
<term>Homeostasis</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Génome bactérien</term>
<term>Génome d'archéobactérie</term>
<term>Génomique</term>
<term>Homéostasie</term>
<term>Phylogenèse</term>
<term>Séquence d'acides aminés</term>
<term>Transfert horizontal de gène</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to examine the natural history of metal homeostasis genes in prokaryotes, open reading frames with homology to characterized P(IB)-type ATPases from the genomes of 188 bacteria and 22 archaea were investigated. Major findings were as follows. First, a high diversity in N-terminal metal binding motifs was observed. These motifs were distributed throughout bacterial and archaeal lineages, suggesting multiple loss and acquisition events. Second, the CopA locus separated into two distinct phylogenetic clusters, CopA1, which contained ATPases with documented Cu(I) influx activity, and CopA2, which contained both efflux and influx transporters and spanned the entire diversity of the bacterial domain, suggesting that CopA2 is the ancestral locus. Finally, phylogentic incongruences between 16S rRNA and P(IB)-type ATPase gene trees identified at least 14 instances of lateral gene transfer (LGT) that had occurred among diverse microbes. Results from bootstrapped supported nodes indicated that (i) a majority of the transfers occurred among proteobacteria, most likely due to the phylogenetic relatedness of these organisms, and (ii) gram-positive bacteria with low moles percent G+C were often involved in instances of LGT. These results, together with our earlier work on the occurrence of LGT in subsurface bacteria (J. M. Coombs and T. Barkay, Appl. Environ. Microbiol. 70:1698-1707, 2004), indicate that LGT has had a minor role in the evolution of P(IB)-type ATPases, unlike other genes that specify survival in metal-stressed environments. This study demonstrates how examination of a specific locus across microbial genomes can contribute to the understanding of phenotypes that are critical to the interactions of microbes with their environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16269744</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>71</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2005</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.</ArticleTitle>
<Pagination>
<MedlinePgn>7083-91</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In order to examine the natural history of metal homeostasis genes in prokaryotes, open reading frames with homology to characterized P(IB)-type ATPases from the genomes of 188 bacteria and 22 archaea were investigated. Major findings were as follows. First, a high diversity in N-terminal metal binding motifs was observed. These motifs were distributed throughout bacterial and archaeal lineages, suggesting multiple loss and acquisition events. Second, the CopA locus separated into two distinct phylogenetic clusters, CopA1, which contained ATPases with documented Cu(I) influx activity, and CopA2, which contained both efflux and influx transporters and spanned the entire diversity of the bacterial domain, suggesting that CopA2 is the ancestral locus. Finally, phylogentic incongruences between 16S rRNA and P(IB)-type ATPase gene trees identified at least 14 instances of lateral gene transfer (LGT) that had occurred among diverse microbes. Results from bootstrapped supported nodes indicated that (i) a majority of the transfers occurred among proteobacteria, most likely due to the phylogenetic relatedness of these organisms, and (ii) gram-positive bacteria with low moles percent G+C were often involved in instances of LGT. These results, together with our earlier work on the occurrence of LGT in subsurface bacteria (J. M. Coombs and T. Barkay, Appl. Environ. Microbiol. 70:1698-1707, 2004), indicate that LGT has had a minor role in the evolution of P(IB)-type ATPases, unlike other genes that specify survival in metal-stressed environments. This study demonstrates how examination of a specific locus across microbial genomes can contribute to the understanding of phenotypes that are critical to the interactions of microbes with their environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coombs</LastName>
<ForeName>J M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA. coombs@adelphi.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barkay</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.8</RegistryNumber>
<NameOfSubstance UI="D000073840">Copper-Transporting ATPases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073840" MajorTopicYN="N">Copper-Transporting ATPases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="Y">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020745" MajorTopicYN="Y">Genome, Archaeal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="Y">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16269744</ArticleId>
<ArticleId IdType="pii">71/11/7083</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.71.11.7083-7091.2005</ArticleId>
<ArticleId IdType="pmc">PMC1287752</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2003 Aug;5(8):650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):291-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Nov;50(3):739-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Microbiol Immunol Hung. 2003;50(4):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Mar;70(3):1698-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15006795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2004 Oct;6(10):1096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15344935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1986 Mar;112(3):441-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3007275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(1):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3467347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 May;86(10):3544-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2524829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Sci. 1986 Nov;3(11):330-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2856615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12775-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8048974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Apr 21;270(16):9217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7721839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1996 May;165(5):297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8661920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1997 Apr;19(4):239-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9167257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Sep;25(5):883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9364914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Jan;46(1):84-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Jan;180(2):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9440521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 4;273(49):32614-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9830000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Feb;31(3):893-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10048032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Aug;33(3):524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 3;274(36):25827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10464323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(19):5891-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Dec;153(4):1525-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):652-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Jul;44(7):1778-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10858330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6981-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Mar;18(3):362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Apr;67(4):1437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jun 26;40(25):7694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11412123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Oct;183(19):5651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Oct 12;506(3):249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Dec;11(6):620-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11682304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Feb 19;208(1):105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Feb;43(4):981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11936079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2002 Apr;6(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2001 Dec;4(4):187-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2002 Jun;61(4):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Sep;184(18):5027-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Dec;19(12):2226-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):187-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2003 Mar 20;304(1-3):153-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2003 Mar 20;304(1-3):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2003 Jun;24(6):519-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(9):R57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Barkay, T" sort="Barkay, T" uniqKey="Barkay T" first="T" last="Barkay">T. Barkay</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Coombs, J M" sort="Coombs, J M" uniqKey="Coombs J" first="J M" last="Coombs">J M Coombs</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16269744
   |texte=   New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16269744" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020