Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.

Identifieur interne : 000246 ( Main/Exploration ); précédent : 000245; suivant : 000247

Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.

Auteurs : Peter G. Kennedy [États-Unis] ; Jesse L. Schouboe ; Rachel H. Rogers ; Marjorie G. Weber ; Nalini M. Nadkarni

Source :

RBID : pubmed:19787390

Descripteurs français

English descriptors

Abstract

The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.

DOI: 10.1007/s00248-009-9587-8
PubMed: 19787390


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.</title>
<author>
<name sortKey="Kennedy, Peter G" sort="Kennedy, Peter G" uniqKey="Kennedy P" first="Peter G" last="Kennedy">Peter G. Kennedy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Lewis and Clark College, Portland, OR 97219, USA. pkennedy@lclark.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Lewis and Clark College, Portland, OR 97219</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schouboe, Jesse L" sort="Schouboe, Jesse L" uniqKey="Schouboe J" first="Jesse L" last="Schouboe">Jesse L. Schouboe</name>
</author>
<author>
<name sortKey="Rogers, Rachel H" sort="Rogers, Rachel H" uniqKey="Rogers R" first="Rachel H" last="Rogers">Rachel H. Rogers</name>
</author>
<author>
<name sortKey="Weber, Marjorie G" sort="Weber, Marjorie G" uniqKey="Weber M" first="Marjorie G" last="Weber">Marjorie G. Weber</name>
</author>
<author>
<name sortKey="Nadkarni, Nalini M" sort="Nadkarni, Nalini M" uniqKey="Nadkarni N" first="Nalini M" last="Nadkarni">Nalini M. Nadkarni</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19787390</idno>
<idno type="pmid">19787390</idno>
<idno type="doi">10.1007/s00248-009-9587-8</idno>
<idno type="wicri:Area/Main/Corpus">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000248</idno>
<idno type="wicri:Area/Main/Curation">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000248</idno>
<idno type="wicri:Area/Main/Exploration">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.</title>
<author>
<name sortKey="Kennedy, Peter G" sort="Kennedy, Peter G" uniqKey="Kennedy P" first="Peter G" last="Kennedy">Peter G. Kennedy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Lewis and Clark College, Portland, OR 97219, USA. pkennedy@lclark.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Lewis and Clark College, Portland, OR 97219</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schouboe, Jesse L" sort="Schouboe, Jesse L" uniqKey="Schouboe J" first="Jesse L" last="Schouboe">Jesse L. Schouboe</name>
</author>
<author>
<name sortKey="Rogers, Rachel H" sort="Rogers, Rachel H" uniqKey="Rogers R" first="Rachel H" last="Rogers">Rachel H. Rogers</name>
</author>
<author>
<name sortKey="Weber, Marjorie G" sort="Weber, Marjorie G" uniqKey="Weber M" first="Marjorie G" last="Weber">Marjorie G. Weber</name>
</author>
<author>
<name sortKey="Nadkarni, Nalini M" sort="Nadkarni, Nalini M" uniqKey="Nadkarni N" first="Nalini M" last="Nadkarni">Nalini M. Nadkarni</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="eISSN">1432-184X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alnus (microbiology)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Frankia (classification)</term>
<term>Frankia (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Nitrogen (analysis)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (genetics)</term>
<term>Washington (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Alnus (microbiologie)</term>
<term>Arbres (génétique)</term>
<term>Azote (analyse)</term>
<term>Frankia (classification)</term>
<term>Frankia (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
<term>Sol (analyse)</term>
<term>Symbiose (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Washington (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrogen</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Azote</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Frankia</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Arbres</term>
<term>Frankia</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Alnus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Alnus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Phylogeny</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
<term>Washington</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génotype</term>
<term>Microbiologie du sol</term>
<term>Phylogenèse</term>
<term>Symbiose</term>
<term>Variation génétique</term>
<term>Washington</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19787390</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-184X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>59</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.</ArticleTitle>
<Pagination>
<MedlinePgn>214-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00248-009-9587-8</ELocationID>
<Abstract>
<AbstractText>The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>Peter G</ForeName>
<Initials>PG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lewis and Clark College, Portland, OR 97219, USA. pkennedy@lclark.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schouboe</LastName>
<ForeName>Jesse L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rogers</LastName>
<ForeName>Rachel H</ForeName>
<Initials>RH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weber</LastName>
<ForeName>Marjorie G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nadkarni</LastName>
<ForeName>Nalini M</ForeName>
<Initials>NM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029661" MajorTopicYN="N">Alnus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014861" MajorTopicYN="N">Washington</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19787390</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-009-9587-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2009 Aug;58(2):384-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19330550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 May;131(4):580-586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Nov;22(15-16):1193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Nov 27;214(4524):1023-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17808667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Entomol. 2007 Oct;36(5):1073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2009 May;32(3):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Mar;147(2):335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):293-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Nadkarni, Nalini M" sort="Nadkarni, Nalini M" uniqKey="Nadkarni N" first="Nalini M" last="Nadkarni">Nalini M. Nadkarni</name>
<name sortKey="Rogers, Rachel H" sort="Rogers, Rachel H" uniqKey="Rogers R" first="Rachel H" last="Rogers">Rachel H. Rogers</name>
<name sortKey="Schouboe, Jesse L" sort="Schouboe, Jesse L" uniqKey="Schouboe J" first="Jesse L" last="Schouboe">Jesse L. Schouboe</name>
<name sortKey="Weber, Marjorie G" sort="Weber, Marjorie G" uniqKey="Weber M" first="Marjorie G" last="Weber">Marjorie G. Weber</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Kennedy, Peter G" sort="Kennedy, Peter G" uniqKey="Kennedy P" first="Peter G" last="Kennedy">Peter G. Kennedy</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19787390
   |texte=   Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19787390" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020