Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bottom-up and top-down regulation of decomposition in a tropical forest.

Identifieur interne : 000265 ( Main/Corpus ); précédent : 000264; suivant : 000266

Bottom-up and top-down regulation of decomposition in a tropical forest.

Auteurs : Ysabel Milton ; Michael Kaspari

Source :

RBID : pubmed:17375326

English descriptors

Abstract

The soil nutrients, microbes, and arthropods of tropical forests are patchy at multiple scales. We asked how these three factors interact to generate patterns of decomposition in 450 100 cm(2 )litterbags arrayed along a 50 m ridge top in a Panama rainforest. We tested top-down (via grazing by microbivores like collembola and diplopods) and bottom-up (via added N and P) effects on the decomposition of cellulose. By using a 1,000-fold gradient in mesh size we generated a two-fold gradient in arthropod grazing. Microbivore grazing first retarded then ultimately enhanced decomposition rates. Micropulses of N and P (simulating concentrated urine) enhanced neither decomposition rates nor microbivores but increased the abundance of predacious ants. Decomposition rates also varied across the ridge, and were lowest in a plot with the deepest litter and highest soil moisture. These data generate the working hypothesis that N and P cascade upward at grains of 100 cm(2) to enhance a major predator in the litter; predators then absorb any increases in microbivores attracted to the extra fungal growth. These population interactions are in turn embedded in mesoscale variability generated by individual tree canopies that drive changes in litter quality and soil moisture.

DOI: 10.1007/s00442-007-0710-6
PubMed: 17375326

Links to Exploration step

pubmed:17375326

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bottom-up and top-down regulation of decomposition in a tropical forest.</title>
<author>
<name sortKey="Milton, Ysabel" sort="Milton, Ysabel" uniqKey="Milton Y" first="Ysabel" last="Milton">Ysabel Milton</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Graduate Program in Ecology and Evolutionary Biology, University of Oklahoma, 730 Van Vleet Oval, Rm 314, Norman, OK 73019-0235, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaspari, Michael" sort="Kaspari, Michael" uniqKey="Kaspari M" first="Michael" last="Kaspari">Michael Kaspari</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17375326</idno>
<idno type="pmid">17375326</idno>
<idno type="doi">10.1007/s00442-007-0710-6</idno>
<idno type="wicri:Area/Main/Corpus">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000265</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bottom-up and top-down regulation of decomposition in a tropical forest.</title>
<author>
<name sortKey="Milton, Ysabel" sort="Milton, Ysabel" uniqKey="Milton Y" first="Ysabel" last="Milton">Ysabel Milton</name>
<affiliation>
<nlm:affiliation>Department of Zoology, Graduate Program in Ecology and Evolutionary Biology, University of Oklahoma, 730 Van Vleet Oval, Rm 314, Norman, OK 73019-0235, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaspari, Michael" sort="Kaspari, Michael" uniqKey="Kaspari M" first="Michael" last="Kaspari">Michael Kaspari</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="ISSN">0029-8549</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arthropods (physiology)</term>
<term>Ecosystem (MeSH)</term>
<term>Feeding Behavior (physiology)</term>
<term>Panama (MeSH)</term>
<term>Trees (physiology)</term>
<term>Tropical Climate (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Panama</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arthropods</term>
<term>Feeding Behavior</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Ecosystem</term>
<term>Tropical Climate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The soil nutrients, microbes, and arthropods of tropical forests are patchy at multiple scales. We asked how these three factors interact to generate patterns of decomposition in 450 100 cm(2 )litterbags arrayed along a 50 m ridge top in a Panama rainforest. We tested top-down (via grazing by microbivores like collembola and diplopods) and bottom-up (via added N and P) effects on the decomposition of cellulose. By using a 1,000-fold gradient in mesh size we generated a two-fold gradient in arthropod grazing. Microbivore grazing first retarded then ultimately enhanced decomposition rates. Micropulses of N and P (simulating concentrated urine) enhanced neither decomposition rates nor microbivores but increased the abundance of predacious ants. Decomposition rates also varied across the ridge, and were lowest in a plot with the deepest litter and highest soil moisture. These data generate the working hypothesis that N and P cascade upward at grains of 100 cm(2) to enhance a major predator in the litter; predators then absorb any increases in microbivores attracted to the extra fungal growth. These population interactions are in turn embedded in mesoscale variability generated by individual tree canopies that drive changes in litter quality and soil moisture.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17375326</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>09</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0029-8549</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>153</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Bottom-up and top-down regulation of decomposition in a tropical forest.</ArticleTitle>
<Pagination>
<MedlinePgn>163-72</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The soil nutrients, microbes, and arthropods of tropical forests are patchy at multiple scales. We asked how these three factors interact to generate patterns of decomposition in 450 100 cm(2 )litterbags arrayed along a 50 m ridge top in a Panama rainforest. We tested top-down (via grazing by microbivores like collembola and diplopods) and bottom-up (via added N and P) effects on the decomposition of cellulose. By using a 1,000-fold gradient in mesh size we generated a two-fold gradient in arthropod grazing. Microbivore grazing first retarded then ultimately enhanced decomposition rates. Micropulses of N and P (simulating concentrated urine) enhanced neither decomposition rates nor microbivores but increased the abundance of predacious ants. Decomposition rates also varied across the ridge, and were lowest in a plot with the deepest litter and highest soil moisture. These data generate the working hypothesis that N and P cascade upward at grains of 100 cm(2) to enhance a major predator in the litter; predators then absorb any increases in microbivores attracted to the extra fungal growth. These population interactions are in turn embedded in mesoscale variability generated by individual tree canopies that drive changes in litter quality and soil moisture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Milton</LastName>
<ForeName>Ysabel</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, Graduate Program in Ecology and Evolutionary Biology, University of Oklahoma, 730 Van Vleet Oval, Rm 314, Norman, OK 73019-0235, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaspari</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>03</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001181" MajorTopicYN="N">Arthropods</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010176" MajorTopicYN="N" Type="Geographic">Panama</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014329" MajorTopicYN="Y">Tropical Climate</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17375326</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-007-0710-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2004 May;139(4):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(2):303-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Feb;155(2):141-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10686157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 1;290(5497):1758-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11099413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jul;94(4):457-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1966 Jul 1;153(3731):67-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17730610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 23;305(5683):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2000 Mar 7;267(1442):485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10737406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Jul;107(2):265-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307313</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17375326
   |texte=   Bottom-up and top-down regulation of decomposition in a tropical forest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:17375326" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020