Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prediction of protein residue contacts with a PDB-derived likelihood matrix.

Identifieur interne : 000486 ( Main/Exploration ); précédent : 000485; suivant : 000487

Prediction of protein residue contacts with a PDB-derived likelihood matrix.

Auteurs : Michael S. Singer [États-Unis] ; Gert Vriend ; Robert P. Bywater

Source :

RBID : pubmed:12456870

Descripteurs français

English descriptors

Abstract

Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.

DOI: 10.1093/protein/15.9.721
PubMed: 12456870


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prediction of protein residue contacts with a PDB-derived likelihood matrix.</title>
<author>
<name sortKey="Singer, Michael S" sort="Singer, Michael S" uniqKey="Singer M" first="Michael S" last="Singer">Michael S. Singer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Neurobiology, Yale University School of Medicine, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Neurobiology, Yale University School of Medicine, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vriend, Gert" sort="Vriend, Gert" uniqKey="Vriend G" first="Gert" last="Vriend">Gert Vriend</name>
</author>
<author>
<name sortKey="Bywater, Robert P" sort="Bywater, Robert P" uniqKey="Bywater R" first="Robert P" last="Bywater">Robert P. Bywater</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12456870</idno>
<idno type="pmid">12456870</idno>
<idno type="doi">10.1093/protein/15.9.721</idno>
<idno type="wicri:Area/Main/Corpus">000479</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000479</idno>
<idno type="wicri:Area/Main/Curation">000479</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000479</idno>
<idno type="wicri:Area/Main/Exploration">000479</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prediction of protein residue contacts with a PDB-derived likelihood matrix.</title>
<author>
<name sortKey="Singer, Michael S" sort="Singer, Michael S" uniqKey="Singer M" first="Michael S" last="Singer">Michael S. Singer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Neurobiology, Yale University School of Medicine, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Neurobiology, Yale University School of Medicine, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vriend, Gert" sort="Vriend, Gert" uniqKey="Vriend G" first="Gert" last="Vriend">Gert Vriend</name>
</author>
<author>
<name sortKey="Bywater, Robert P" sort="Bywater, Robert P" uniqKey="Bywater R" first="Robert P" last="Bywater">Robert P. Bywater</name>
</author>
</analytic>
<series>
<title level="j">Protein engineering</title>
<idno type="ISSN">0269-2139</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Databases, Protein (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Protein Engineering (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Sweetening Agents (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bases de données de protéines (MeSH)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Édulcorants (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
<term>Sweetening Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines</term>
<term>Protéines végétales</term>
<term>Édulcorants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Databases, Protein</term>
<term>Likelihood Functions</term>
<term>Mutation</term>
<term>Protein Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données de protéines</term>
<term>Fonctions de vraisemblance</term>
<term>Ingénierie des protéines</term>
<term>Mutation</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12456870</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0269-2139</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2002</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Protein engineering</Title>
<ISOAbbreviation>Protein Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Prediction of protein residue contacts with a PDB-derived likelihood matrix.</ArticleTitle>
<Pagination>
<MedlinePgn>721-5</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Proteins with similar folds often display common patterns of residue variability. A widely discussed question is how these patterns can be identified and deconvoluted to predict protein structure. In this respect, correlated mutation analysis (CMA) has shown considerable promise. CMA compares multiple members of a protein family and detects residues that remain constant or mutate in tandem. Often this behavior points to structural or functional interdependence between residues. CMA has been used to predict pairs of amino acids that are distant in the primary sequence but likely to form close contacts in the native three-dimensional structure. Until now these methods have used evolutionary or biophysical models to score the fit between residues. We wished to test whether empirical methods, derived from known protein structures, would provide useful predictive power for CMA. We analyzed 672 known protein structures, derived contact likelihood scores for all possible amino acid pairs, and used these scores to predict contacts. We then tested the method on 118 different protein families for which structures have been solved to atomic resolution. The mean performance was almost seven times better than random prediction. Used in concert with secondary structure prediction, the new CMA method could supply restraints for predicting still undetermined structures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Singer</LastName>
<ForeName>Michael S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Section of Neurobiology, Yale University School of Medicine, New Haven, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vriend</LastName>
<ForeName>Gert</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bywater</LastName>
<ForeName>Robert P</ForeName>
<Initials>RP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Protein Eng</MedlineTA>
<NlmUniqueID>8801484</NlmUniqueID>
<ISSNLinking>0269-2139</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013549">Sweetening Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030562" MajorTopicYN="N">Databases, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013549" MajorTopicYN="N">Sweetening Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12456870</ArticleId>
<ArticleId IdType="doi">10.1093/protein/15.9.721</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bywater, Robert P" sort="Bywater, Robert P" uniqKey="Bywater R" first="Robert P" last="Bywater">Robert P. Bywater</name>
<name sortKey="Vriend, Gert" sort="Vriend, Gert" uniqKey="Vriend G" first="Gert" last="Vriend">Gert Vriend</name>
</noCountry>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Singer, Michael S" sort="Singer, Michael S" uniqKey="Singer M" first="Michael S" last="Singer">Michael S. Singer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12456870
   |texte=   Prediction of protein residue contacts with a PDB-derived likelihood matrix.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12456870" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020