Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural sweet macromolecules: how sweet proteins work.

Identifieur interne : 000387 ( Main/Exploration ); précédent : 000386; suivant : 000388

Natural sweet macromolecules: how sweet proteins work.

Auteurs : P A Temussi [Italie]

Source :

RBID : pubmed:16810455

Descripteurs français

English descriptors

Abstract

A few proteins, discovered mainly in tropical fruits, have a distinct sweet taste. These proteins have played an important role towards a molecular understanding of the mechanisms of taste. Owing to the huge difference in size, between most sweeteners and sweet proteins, it was believed that they must interact with a different receptor from that of small molecular weight sweeteners. Recent modelling studies have shown that the single sweet taste receptor has multiple active sites and that the mechanism of interaction of sweet proteins is intrinsically different from that of small sweeteners. Small molecular weight sweeteners occupy small receptor cavities inside two subdomains of the receptor, whereas sweet proteins can interact with the sweet receptor according to a mechanism called the 'wedge model' in which they bind to a large external cavity. This review describes these mechanisms and outlines a history of sweet proteins.

DOI: 10.1007/s00018-006-6077-8
PubMed: 16810455


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural sweet macromolecules: how sweet proteins work.</title>
<author>
<name sortKey="Temussi, P A" sort="Temussi, P A" uniqKey="Temussi P" first="P A" last="Temussi">P A Temussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Università di Napoli Federico II, via Cinthia 45, Naples, 80126, Italy. temussi@unina.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Napoli Federico II, via Cinthia 45, Naples, 80126</wicri:regionArea>
<wicri:noRegion>80126</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16810455</idno>
<idno type="pmid">16810455</idno>
<idno type="doi">10.1007/s00018-006-6077-8</idno>
<idno type="wicri:Area/Main/Corpus">000387</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000387</idno>
<idno type="wicri:Area/Main/Curation">000387</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000387</idno>
<idno type="wicri:Area/Main/Exploration">000387</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural sweet macromolecules: how sweet proteins work.</title>
<author>
<name sortKey="Temussi, P A" sort="Temussi, P A" uniqKey="Temussi P" first="P A" last="Temussi">P A Temussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Università di Napoli Federico II, via Cinthia 45, Naples, 80126, Italy. temussi@unina.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Napoli Federico II, via Cinthia 45, Naples, 80126</wicri:regionArea>
<wicri:noRegion>80126</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular life sciences : CMLS</title>
<idno type="ISSN">1420-682X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sweetening Agents (chemistry)</term>
<term>Taste (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Goût (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Édulcorants (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Sweetening Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Édulcorants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Taste</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Goût</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A few proteins, discovered mainly in tropical fruits, have a distinct sweet taste. These proteins have played an important role towards a molecular understanding of the mechanisms of taste. Owing to the huge difference in size, between most sweeteners and sweet proteins, it was believed that they must interact with a different receptor from that of small molecular weight sweeteners. Recent modelling studies have shown that the single sweet taste receptor has multiple active sites and that the mechanism of interaction of sweet proteins is intrinsically different from that of small sweeteners. Small molecular weight sweeteners occupy small receptor cavities inside two subdomains of the receptor, whereas sweet proteins can interact with the sweet receptor according to a mechanism called the 'wedge model' in which they bind to a large external cavity. This review describes these mechanisms and outlines a history of sweet proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16810455</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1420-682X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>63</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2006</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular life sciences : CMLS</Title>
<ISOAbbreviation>Cell Mol Life Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural sweet macromolecules: how sweet proteins work.</ArticleTitle>
<Pagination>
<MedlinePgn>1876-88</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A few proteins, discovered mainly in tropical fruits, have a distinct sweet taste. These proteins have played an important role towards a molecular understanding of the mechanisms of taste. Owing to the huge difference in size, between most sweeteners and sweet proteins, it was believed that they must interact with a different receptor from that of small molecular weight sweeteners. Recent modelling studies have shown that the single sweet taste receptor has multiple active sites and that the mechanism of interaction of sweet proteins is intrinsically different from that of small sweeteners. Small molecular weight sweeteners occupy small receptor cavities inside two subdomains of the receptor, whereas sweet proteins can interact with the sweet receptor according to a mechanism called the 'wedge model' in which they bind to a large external cavity. This review describes these mechanisms and outlines a history of sweet proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Temussi</LastName>
<ForeName>P A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Università di Napoli Federico II, via Cinthia 45, Naples, 80126, Italy. temussi@unina.it</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_U117584256</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cell Mol Life Sci</MedlineTA>
<NlmUniqueID>9705402</NlmUniqueID>
<ISSNLinking>1420-682X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013549">Sweetening Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013549" MajorTopicYN="N">Sweetening Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013649" MajorTopicYN="Y">Taste</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>100</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16810455</ArticleId>
<ArticleId IdType="doi">10.1007/s00018-006-6077-8</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Temussi, P A" sort="Temussi, P A" uniqKey="Temussi P" first="P A" last="Temussi">P A Temussi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000387 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000387 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16810455
   |texte=   Natural sweet macromolecules: how sweet proteins work.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16810455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020