Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.

Identifieur interne : 000313 ( Main/Exploration ); précédent : 000312; suivant : 000314

Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.

Auteurs : Alejandro Zamora [États-Unis] ; Qi Sun ; Martha T. Hamblin ; Charles F. Aquadro ; Stephen Kresovich

Source :

RBID : pubmed:19506000

Descripteurs français

English descriptors

Abstract

Disease response genes (DRGs) diverge under recurrent positive selection as a result of a molecular arms race between hosts and pathogens. Most of these studies were conducted in animals, and few defense genes have been shown to evolve adaptively in plants. To test for adaptation in the molecules mediating disease resistance in the cereals, we first combined information from the expression pattern of Sorghum bicolor genes and from divergence to the full genome of rice to identify candidate DRGs. We then used evolutionary analyses of orthologous gene sets from several grass species, to determine whether the DRGs show signals of positive selection and the residues targeted. We found 140 divergent genes upregulated under biotic stress in S. bicolor by evaluating the relative abundance of expressed sequence tags in different libraries and comparing them with rice genes. For 10 of these genes, we found sets of orthologs including sequences from rice and three other cereals; six genes showed a pattern of substitution that was consistent with positive selection. Three of these genes, a thaumatin, a peroxidase, and a barley mlo homolog, are known antifungal proteins. The other three genes with evidence of positive selection were a MCM-1 agamous deficiens SRF- (MADS) box transcription factor, an eIF5 translation initiation factor, and a gene of unknown function but with evidence of expression during stress. Permutation analyses, using different ortholog and paralog sequences, consistently identified five positively selected codons in the peroxidase, a member of a cluster of genes and a large gene family. We mapped the positively selected residues onto the structure of the peroxidase and thaumatin and found that all sites are on the surface of these proteins and several are close to biochemically determined active sites. Identifying new positively selected plant disease resistance genes and the critical amino acid sites provides a basis for functional studies that may increase our understanding of their underlying molecular mechanisms of action. Additionally, it may lead to the identification of individuals having variation at functionally important sites, as well as eventually using this information in the rational design and engineering of proteins involved in plant disease resistance.

DOI: 10.1093/molbev/msp114
PubMed: 19506000
PubMed Central: PMC2917010


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.</title>
<author>
<name sortKey="Zamora, Alejandro" sort="Zamora, Alejandro" uniqKey="Zamora A" first="Alejandro" last="Zamora">Alejandro Zamora</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. az42@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qi" sort="Sun, Qi" uniqKey="Sun Q" first="Qi" last="Sun">Qi Sun</name>
</author>
<author>
<name sortKey="Hamblin, Martha T" sort="Hamblin, Martha T" uniqKey="Hamblin M" first="Martha T" last="Hamblin">Martha T. Hamblin</name>
</author>
<author>
<name sortKey="Aquadro, Charles F" sort="Aquadro, Charles F" uniqKey="Aquadro C" first="Charles F" last="Aquadro">Charles F. Aquadro</name>
</author>
<author>
<name sortKey="Kresovich, Stephen" sort="Kresovich, Stephen" uniqKey="Kresovich S" first="Stephen" last="Kresovich">Stephen Kresovich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19506000</idno>
<idno type="pmid">19506000</idno>
<idno type="doi">10.1093/molbev/msp114</idno>
<idno type="pmc">PMC2917010</idno>
<idno type="wicri:Area/Main/Corpus">000313</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000313</idno>
<idno type="wicri:Area/Main/Curation">000313</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000313</idno>
<idno type="wicri:Area/Main/Exploration">000313</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.</title>
<author>
<name sortKey="Zamora, Alejandro" sort="Zamora, Alejandro" uniqKey="Zamora A" first="Alejandro" last="Zamora">Alejandro Zamora</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. az42@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Diversity, Cornell University, Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qi" sort="Sun, Qi" uniqKey="Sun Q" first="Qi" last="Sun">Qi Sun</name>
</author>
<author>
<name sortKey="Hamblin, Martha T" sort="Hamblin, Martha T" uniqKey="Hamblin M" first="Martha T" last="Hamblin">Martha T. Hamblin</name>
</author>
<author>
<name sortKey="Aquadro, Charles F" sort="Aquadro, Charles F" uniqKey="Aquadro C" first="Charles F" last="Aquadro">Charles F. Aquadro</name>
</author>
<author>
<name sortKey="Kresovich, Stephen" sort="Kresovich, Stephen" uniqKey="Kresovich S" first="Stephen" last="Kresovich">Stephen Kresovich</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology and evolution</title>
<idno type="eISSN">1537-1719</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Codon (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peroxidase (chemistry)</term>
<term>Peroxidase (genetics)</term>
<term>Peroxidase (metabolism)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Seeds (genetics)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Sorghum (enzymology)</term>
<term>Sorghum (genetics)</term>
<term>Stress, Physiological (genetics)</term>
<term>Surface Properties (MeSH)</term>
<term>Up-Regulation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Codon (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Graines (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Myeloperoxidase (composition chimique)</term>
<term>Myeloperoxidase (génétique)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>Propriétés de surface (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (génétique)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Sorghum (enzymologie)</term>
<term>Sorghum (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Sélection génétique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peroxidase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Codon</term>
<term>Peroxidase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Myeloperoxidase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Plant Diseases</term>
<term>Seeds</term>
<term>Sorghum</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Codon</term>
<term>Graines</term>
<term>Maladies des plantes</term>
<term>Myeloperoxidase</term>
<term>Protéines végétales</term>
<term>Régulation positive</term>
<term>Sorghum</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Myeloperoxidase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genomics</term>
<term>Likelihood Functions</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Selection, Genetic</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Fonctions de vraisemblance</term>
<term>Gènes de plante</term>
<term>Génomique</term>
<term>Modèles moléculaires</term>
<term>Propriétés de surface</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Sélection génétique</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Disease response genes (DRGs) diverge under recurrent positive selection as a result of a molecular arms race between hosts and pathogens. Most of these studies were conducted in animals, and few defense genes have been shown to evolve adaptively in plants. To test for adaptation in the molecules mediating disease resistance in the cereals, we first combined information from the expression pattern of Sorghum bicolor genes and from divergence to the full genome of rice to identify candidate DRGs. We then used evolutionary analyses of orthologous gene sets from several grass species, to determine whether the DRGs show signals of positive selection and the residues targeted. We found 140 divergent genes upregulated under biotic stress in S. bicolor by evaluating the relative abundance of expressed sequence tags in different libraries and comparing them with rice genes. For 10 of these genes, we found sets of orthologs including sequences from rice and three other cereals; six genes showed a pattern of substitution that was consistent with positive selection. Three of these genes, a thaumatin, a peroxidase, and a barley mlo homolog, are known antifungal proteins. The other three genes with evidence of positive selection were a MCM-1 agamous deficiens SRF- (MADS) box transcription factor, an eIF5 translation initiation factor, and a gene of unknown function but with evidence of expression during stress. Permutation analyses, using different ortholog and paralog sequences, consistently identified five positively selected codons in the peroxidase, a member of a cluster of genes and a large gene family. We mapped the positively selected residues onto the structure of the peroxidase and thaumatin and found that all sites are on the surface of these proteins and several are close to biochemically determined active sites. Identifying new positively selected plant disease resistance genes and the critical amino acid sites provides a basis for functional studies that may increase our understanding of their underlying molecular mechanisms of action. Additionally, it may lead to the identification of individuals having variation at functionally important sites, as well as eventually using this information in the rational design and engineering of proteins involved in plant disease resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19506000</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-1719</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology and evolution</Title>
<ISOAbbreviation>Mol Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.</ArticleTitle>
<Pagination>
<MedlinePgn>2015-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/molbev/msp114</ELocationID>
<Abstract>
<AbstractText>Disease response genes (DRGs) diverge under recurrent positive selection as a result of a molecular arms race between hosts and pathogens. Most of these studies were conducted in animals, and few defense genes have been shown to evolve adaptively in plants. To test for adaptation in the molecules mediating disease resistance in the cereals, we first combined information from the expression pattern of Sorghum bicolor genes and from divergence to the full genome of rice to identify candidate DRGs. We then used evolutionary analyses of orthologous gene sets from several grass species, to determine whether the DRGs show signals of positive selection and the residues targeted. We found 140 divergent genes upregulated under biotic stress in S. bicolor by evaluating the relative abundance of expressed sequence tags in different libraries and comparing them with rice genes. For 10 of these genes, we found sets of orthologs including sequences from rice and three other cereals; six genes showed a pattern of substitution that was consistent with positive selection. Three of these genes, a thaumatin, a peroxidase, and a barley mlo homolog, are known antifungal proteins. The other three genes with evidence of positive selection were a MCM-1 agamous deficiens SRF- (MADS) box transcription factor, an eIF5 translation initiation factor, and a gene of unknown function but with evidence of expression during stress. Permutation analyses, using different ortholog and paralog sequences, consistently identified five positively selected codons in the peroxidase, a member of a cluster of genes and a large gene family. We mapped the positively selected residues onto the structure of the peroxidase and thaumatin and found that all sites are on the surface of these proteins and several are close to biochemically determined active sites. Identifying new positively selected plant disease resistance genes and the critical amino acid sites provides a basis for functional studies that may increase our understanding of their underlying molecular mechanisms of action. Additionally, it may lead to the identification of individuals having variation at functionally important sites, as well as eventually using this information in the rational design and engineering of proteins involved in plant disease resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zamora</LastName>
<ForeName>Alejandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. az42@cornell.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamblin</LastName>
<ForeName>Martha T</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aquadro</LastName>
<ForeName>Charles F</ForeName>
<Initials>CF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kresovich</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM036431</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Evol</MedlineTA>
<NlmUniqueID>8501455</NlmUniqueID>
<ISSNLinking>0737-4038</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="Y">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19506000</ArticleId>
<ArticleId IdType="pii">msp114</ArticleId>
<ArticleId IdType="doi">10.1093/molbev/msp114</ArticleId>
<ArticleId IdType="pmc">PMC2917010</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2013-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):364-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Mar;54(384):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12598580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):40-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jul 18;321(5887):356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Jul;167(3):1331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Nov;8(11):1113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Sep;12(9):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jan;21(1):30-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Mar;148(3):929-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:575-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Sep;7(5):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2002;3(2):132-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Nov;162(3):1389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2031-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Oct;168(2):1041-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15514074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Mar 15;17(6):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Mar 7;88(5):695-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1890-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Dec;38(12):1406-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Feb;25(2):79-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Oct;88(10):1087-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):280-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D800-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Dec;13(12):2725-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14613979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Feb;7(2):67-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Jul;63(1):12-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16736102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Jan;96(1):46-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1997;35:235-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):352-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Sep;15(9):1284-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16109971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D404-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1997 Dec;4(12):1032-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9406554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Dec 3;462(3):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10622731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 30;305(5684):665-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Apr;12(4):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:873-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2197993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):525-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jan 1;23(1):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):710-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):869-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1177-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Apr;10(4):516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Dec;10(12):2055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Aug;18(8):1585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2005;39:197-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Mar;82(5):1406-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3856268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(6):912-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15941403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8685266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2913-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Jun;19(6):950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032251</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Aquadro, Charles F" sort="Aquadro, Charles F" uniqKey="Aquadro C" first="Charles F" last="Aquadro">Charles F. Aquadro</name>
<name sortKey="Hamblin, Martha T" sort="Hamblin, Martha T" uniqKey="Hamblin M" first="Martha T" last="Hamblin">Martha T. Hamblin</name>
<name sortKey="Kresovich, Stephen" sort="Kresovich, Stephen" uniqKey="Kresovich S" first="Stephen" last="Kresovich">Stephen Kresovich</name>
<name sortKey="Sun, Qi" sort="Sun, Qi" uniqKey="Sun Q" first="Qi" last="Sun">Qi Sun</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Zamora, Alejandro" sort="Zamora, Alejandro" uniqKey="Zamora A" first="Alejandro" last="Zamora">Alejandro Zamora</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19506000
   |texte=   Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19506000" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020