Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How good can our beamlines be?

Identifieur interne : 000228 ( Main/Exploration ); précédent : 000227; suivant : 000229

How good can our beamlines be?

Auteurs : Dorothee Liebschner [États-Unis] ; Miroslawa Dauter ; Gerold Rosenbaum ; Zbigniew Dauter

Source :

RBID : pubmed:22993097

Descripteurs français

English descriptors

Abstract

The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.

DOI: 10.1107/S0907444912034658
PubMed: 22993097
PubMed Central: PMC3447404


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How good can our beamlines be?</title>
<author>
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
</author>
<author>
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
</author>
<author>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22993097</idno>
<idno type="pmid">22993097</idno>
<idno type="doi">10.1107/S0907444912034658</idno>
<idno type="pmc">PMC3447404</idno>
<idno type="wicri:Area/Main/Corpus">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000215</idno>
<idno type="wicri:Area/Main/Curation">000215</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000215</idno>
<idno type="wicri:Area/Main/Exploration">000215</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How good can our beamlines be?</title>
<author>
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
</author>
<author>
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
</author>
<author>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Biological crystallography</title>
<idno type="eISSN">1399-0047</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (instrumentation)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Plant Proteins (chemistry)</term>
<term>Random Allocation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (instrumentation)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Répartition aléatoire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Random Allocation</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="fr">
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Répartition aléatoire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22993097</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-0047</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>68</Volume>
<Issue>Pt 10</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Biological crystallography</Title>
<ISOAbbreviation>Acta Crystallogr D Biol Crystallogr</ISOAbbreviation>
</Journal>
<ArticleTitle>How good can our beamlines be?</ArticleTitle>
<Pagination>
<MedlinePgn>1430-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liebschner</LastName>
<ForeName>Dorothee</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dauter</LastName>
<ForeName>Miroslawa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosenbaum</LastName>
<ForeName>Gerold</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dauter</LastName>
<ForeName>Zbigniew</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>N01CO12400</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01-CO-12400</GrantID>
<Acronym>CO</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Biol Crystallogr</MedlineTA>
<NlmUniqueID>9305878</NlmUniqueID>
<ISSNLinking>0907-4449</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011897" MajorTopicYN="N">Random Allocation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22993097</ArticleId>
<ArticleId IdType="pii">S0907444912034658</ArticleId>
<ArticleId IdType="doi">10.1107/S0907444912034658</ArticleId>
<ArticleId IdType="pmc">PMC3447404</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Oct;55(Pt 10):1696-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10531519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2006 Jan;13(Pt 1):30-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16371706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jun;66(Pt 6):733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2010 Oct 01;43(Pt 6):1356-1371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27006649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Sep 25;106(3):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">978739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22993097
   |texte=   How good can our beamlines be?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22993097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020