Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radiation decay of thaumatin crystals at three X-ray energies.

Identifieur interne : 000130 ( Main/Exploration ); précédent : 000129; suivant : 000131

Radiation decay of thaumatin crystals at three X-ray energies.

Auteurs : Dorothee Liebschner [Japon] ; Gerold Rosenbaum [États-Unis] ; Miroslawa Dauter [États-Unis] ; Zbigniew Dauter [États-Unis]

Source :

RBID : pubmed:25849388

Descripteurs français

English descriptors

Abstract

Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Å resolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies.

DOI: 10.1107/S1399004715001030
PubMed: 25849388
PubMed Central: PMC4388262


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Radiation decay of thaumatin crystals at three X-ray energies.</title>
<author>
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25849388</idno>
<idno type="pmid">25849388</idno>
<idno type="doi">10.1107/S1399004715001030</idno>
<idno type="pmc">PMC4388262</idno>
<idno type="wicri:Area/Main/Corpus">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000141</idno>
<idno type="wicri:Area/Main/Curation">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000141</idno>
<idno type="wicri:Area/Main/Exploration">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Radiation decay of thaumatin crystals at three X-ray energies.</title>
<author>
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Biological crystallography</title>
<idno type="eISSN">1399-0047</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plants (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Plantes (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Plantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Å resolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25849388</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-0047</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<Issue>Pt 4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Biological crystallography</Title>
<ISOAbbreviation>Acta Crystallogr D Biol Crystallogr</ISOAbbreviation>
</Journal>
<ArticleTitle>Radiation decay of thaumatin crystals at three X-ray energies.</ArticleTitle>
<Pagination>
<MedlinePgn>772-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S1399004715001030</ELocationID>
<Abstract>
<AbstractText>Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Å resolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liebschner</LastName>
<ForeName>Dorothee</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenbaum</LastName>
<ForeName>Gerold</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Georgia and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dauter</LastName>
<ForeName>Miroslawa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Leidos Biomedical Research Inc., Basic Science Program, Argonne National Laboratory, Argonne, IL 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dauter</LastName>
<ForeName>Zbigniew</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN261200800E</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Biol Crystallogr</MedlineTA>
<NlmUniqueID>9305878</NlmUniqueID>
<ISSNLinking>0907-4449</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dose limit</Keyword>
<Keyword MajorTopicYN="N">energy dependence</Keyword>
<Keyword MajorTopicYN="N">radiation damage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25849388</ArticleId>
<ArticleId IdType="pii">S1399004715001030</ArticleId>
<ArticleId IdType="doi">10.1107/S1399004715001030</ArticleId>
<ArticleId IdType="pmc">PMC4388262</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):327-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jan;11(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):304-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2006 Jan;13(Pt 1):30-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16371706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2000 Mar 1;7(Pt 2):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16609175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2006 Oct;16(5):624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16938450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2010 Mar;11(1):85-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2011 May;18(Pt 3):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Oct;68(Pt 10):1430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1988 Feb 1;44 ( Pt 1):22-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3271102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Dec 15;2(12):1135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Sep 25;106(3):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">978739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Liebschner, Dorothee" sort="Liebschner, Dorothee" uniqKey="Liebschner D" first="Dorothee" last="Liebschner">Dorothee Liebschner</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Rosenbaum, Gerold" sort="Rosenbaum, Gerold" uniqKey="Rosenbaum G" first="Gerold" last="Rosenbaum">Gerold Rosenbaum</name>
</region>
<name sortKey="Dauter, Miroslawa" sort="Dauter, Miroslawa" uniqKey="Dauter M" first="Miroslawa" last="Dauter">Miroslawa Dauter</name>
<name sortKey="Dauter, Zbigniew" sort="Dauter, Zbigniew" uniqKey="Dauter Z" first="Zbigniew" last="Dauter">Zbigniew Dauter</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25849388
   |texte=   Radiation decay of thaumatin crystals at three X-ray energies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25849388" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020