Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.

Identifieur interne : 000263 ( Main/Curation ); précédent : 000262; suivant : 000264

Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.

Auteurs : Matteo Marangon [Australie] ; Francois-Xavier Sauvage ; Elizabeth J. Waters ; Aude Vernhet

Source :

RBID : pubmed:21361294

Descripteurs français

English descriptors

Abstract

Consumers expect white wines to be clear. During the storage of wines, grape proteins can aggregate to form haze. These proteins, particularly chitinases and thaumatin-like proteins (TL-proteins), need to be removed, and this is done through adsorption by bentonite, an effective but inefficient wine-processing step. Alternative processes are sought, but, for them to be successful, an in-depth understanding of the causes of protein hazing is required. This study investigated the role played by ionic strength (I) and sulfate toward the aggregation of TL-proteins and chitinases upon heating. Purified proteins were dissolved in model wine and analyzed by dynamic light scattering (DLS). The effect of I on protein aggregation was investigated within the range from 2 to 500 mM/L. For chitinases, aggregation occurred during heating with I values of 100 and 500 mM/L, depending on the isoform. This aggregation immediately led to the formation of large particles (3 μm, visible haze after cooling). TL-protein aggregation was observed only with I of 500 mM/L; it mainly developed during cooling and led to the formation of finite aggregates (400 nm) that remained invisible. With sulfate in the medium chitinases formed visible haze immediately when heat was applied, whereas TL-proteins aggregated during cooling but not into particles large enough to be visible to the naked eye. The data show that the aggregation mechanisms of TL-proteins and chitinases are different and are influenced by the ionic strength and ionic content of the model wine. Under the conditions used in this study, chitinases were more prone to precipitate and form haze than TL-proteins.

DOI: 10.1021/jf104334v
PubMed: 21361294

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21361294

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.</title>
<author>
<name sortKey="Marangon, Matteo" sort="Marangon, Matteo" uniqKey="Marangon M" first="Matteo" last="Marangon">Matteo Marangon</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sauvage, Francois Xavier" sort="Sauvage, Francois Xavier" uniqKey="Sauvage F" first="Francois-Xavier" last="Sauvage">Francois-Xavier Sauvage</name>
</author>
<author>
<name sortKey="Waters, Elizabeth J" sort="Waters, Elizabeth J" uniqKey="Waters E" first="Elizabeth J" last="Waters">Elizabeth J. Waters</name>
</author>
<author>
<name sortKey="Vernhet, Aude" sort="Vernhet, Aude" uniqKey="Vernhet A" first="Aude" last="Vernhet">Aude Vernhet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21361294</idno>
<idno type="pmid">21361294</idno>
<idno type="doi">10.1021/jf104334v</idno>
<idno type="wicri:Area/Main/Corpus">000263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000263</idno>
<idno type="wicri:Area/Main/Curation">000263</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.</title>
<author>
<name sortKey="Marangon, Matteo" sort="Marangon, Matteo" uniqKey="Marangon M" first="Matteo" last="Marangon">Matteo Marangon</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sauvage, Francois Xavier" sort="Sauvage, Francois Xavier" uniqKey="Sauvage F" first="Francois-Xavier" last="Sauvage">Francois-Xavier Sauvage</name>
</author>
<author>
<name sortKey="Waters, Elizabeth J" sort="Waters, Elizabeth J" uniqKey="Waters E" first="Elizabeth J" last="Waters">Elizabeth J. Waters</name>
</author>
<author>
<name sortKey="Vernhet, Aude" sort="Vernhet, Aude" uniqKey="Vernhet A" first="Aude" last="Vernhet">Aude Vernhet</name>
</author>
</analytic>
<series>
<title level="j">Journal of agricultural and food chemistry</title>
<idno type="eISSN">1520-5118</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chitinases (chemistry)</term>
<term>Enzyme Stability (drug effects)</term>
<term>Hot Temperature (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Osmolar Concentration (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Protein Conformation (drug effects)</term>
<term>Sulfates (pharmacology)</term>
<term>Vitis (chemistry)</term>
<term>Vitis (enzymology)</term>
<term>Wine (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chitinase (composition chimique)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration osmolaire (MeSH)</term>
<term>Conformation des protéines (effets des médicaments et des substances chimiques)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Stabilité enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Sulfates (pharmacologie)</term>
<term>Température élevée (MeSH)</term>
<term>Vin (analyse)</term>
<term>Vitis (composition chimique)</term>
<term>Vitis (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chitinases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Vin</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Wine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chitinase</term>
<term>Protéines végétales</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Enzyme Stability</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Stabilité enzymatique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sulfates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sulfates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hot Temperature</term>
<term>Kinetics</term>
<term>Osmolar Concentration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Concentration osmolaire</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Consumers expect white wines to be clear. During the storage of wines, grape proteins can aggregate to form haze. These proteins, particularly chitinases and thaumatin-like proteins (TL-proteins), need to be removed, and this is done through adsorption by bentonite, an effective but inefficient wine-processing step. Alternative processes are sought, but, for them to be successful, an in-depth understanding of the causes of protein hazing is required. This study investigated the role played by ionic strength (I) and sulfate toward the aggregation of TL-proteins and chitinases upon heating. Purified proteins were dissolved in model wine and analyzed by dynamic light scattering (DLS). The effect of I on protein aggregation was investigated within the range from 2 to 500 mM/L. For chitinases, aggregation occurred during heating with I values of 100 and 500 mM/L, depending on the isoform. This aggregation immediately led to the formation of large particles (3 μm, visible haze after cooling). TL-protein aggregation was observed only with I of 500 mM/L; it mainly developed during cooling and led to the formation of finite aggregates (400 nm) that remained invisible. With sulfate in the medium chitinases formed visible haze immediately when heat was applied, whereas TL-proteins aggregated during cooling but not into particles large enough to be visible to the naked eye. The data show that the aggregation mechanisms of TL-proteins and chitinases are different and are influenced by the ionic strength and ionic content of the model wine. Under the conditions used in this study, chitinases were more prone to precipitate and form haze than TL-proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21361294</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5118</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>59</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Journal of agricultural and food chemistry</Title>
<ISOAbbreviation>J Agric Food Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.</ArticleTitle>
<Pagination>
<MedlinePgn>2652-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jf104334v</ELocationID>
<Abstract>
<AbstractText>Consumers expect white wines to be clear. During the storage of wines, grape proteins can aggregate to form haze. These proteins, particularly chitinases and thaumatin-like proteins (TL-proteins), need to be removed, and this is done through adsorption by bentonite, an effective but inefficient wine-processing step. Alternative processes are sought, but, for them to be successful, an in-depth understanding of the causes of protein hazing is required. This study investigated the role played by ionic strength (I) and sulfate toward the aggregation of TL-proteins and chitinases upon heating. Purified proteins were dissolved in model wine and analyzed by dynamic light scattering (DLS). The effect of I on protein aggregation was investigated within the range from 2 to 500 mM/L. For chitinases, aggregation occurred during heating with I values of 100 and 500 mM/L, depending on the isoform. This aggregation immediately led to the formation of large particles (3 μm, visible haze after cooling). TL-protein aggregation was observed only with I of 500 mM/L; it mainly developed during cooling and led to the formation of finite aggregates (400 nm) that remained invisible. With sulfate in the medium chitinases formed visible haze immediately when heat was applied, whereas TL-proteins aggregated during cooling but not into particles large enough to be visible to the naked eye. The data show that the aggregation mechanisms of TL-proteins and chitinases are different and are influenced by the ionic strength and ionic content of the model wine. Under the conditions used in this study, chitinases were more prone to precipitate and form haze than TL-proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marangon</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sauvage</LastName>
<ForeName>Francois-Xavier</ForeName>
<Initials>FX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waters</LastName>
<ForeName>Elizabeth J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vernhet</LastName>
<ForeName>Aude</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Agric Food Chem</MedlineTA>
<NlmUniqueID>0374755</NlmUniqueID>
<ISSNLinking>0021-8561</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013431">Sulfates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.14</RegistryNumber>
<NameOfSubstance UI="D002688">Chitinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002688" MajorTopicYN="N">Chitinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009994" MajorTopicYN="N">Osmolar Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013431" MajorTopicYN="N">Sulfates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014920" MajorTopicYN="N">Wine</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21361294</ArticleId>
<ArticleId IdType="doi">10.1021/jf104334v</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21361294
   |texte=   Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:21361294" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020