Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.

Identifieur interne : 000431 ( Main/Corpus ); précédent : 000430; suivant : 000432

Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.

Auteurs : Bo Zheng ; Joshua D. Tice ; Rustem F. Ismagilov

Source :

RBID : pubmed:15373431

English descriptors

Abstract

For screening the conditions for a reaction by using droplets (or plugs) as microreactors, the composition of the droplets must be indexed. Indexing here refers to measuring the concentration of a solute by addition of a marker, either internal or external. Indexing may be performed by forming droplet pairs, where in each pair the first droplet is used to conduct the reaction, and the second droplet is used to index the composition of the first droplet. This paper characterizes a method for creating droplet pairs by generating alternating droplets, of two sets of aqueous solutions in a flow of immiscible carrier fluid within PDMS and glass microfluidic channels. The paper also demonstrates that the technique can be used to index the composition of the droplets, and this application is illustrated by screening conditions of protein crystallization. The fluid properties required to form the steady flow of the alternating droplets in a microchannel were characterized as a function of the capillary number Ca and water fraction. Four regimes were observed. At the lowest values of Ca, the droplets of the two streams coalesced; at intermediate values of Ca the alternating droplets formed reliably. At even higher values of Ca, shear forces dominated and caused formation of droplets that were smaller than the cross-sectional dimension of the channel; at the highest values of Ca, coflowing laminar streams of the two immiscible fluids formed. In addition to screening of protein crystallization conditions, understanding of the fluid flow in this system may extend this indexing approach to other chemical and biological assays performed on a microfluidic chip.

DOI: 10.1021/ac0495743
PubMed: 15373431
PubMed Central: PMC1766978

Links to Exploration step

pubmed:15373431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.</title>
<author>
<name sortKey="Zheng, Bo" sort="Zheng, Bo" uniqKey="Zheng B" first="Bo" last="Zheng">Bo Zheng</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tice, Joshua D" sort="Tice, Joshua D" uniqKey="Tice J" first="Joshua D" last="Tice">Joshua D. Tice</name>
</author>
<author>
<name sortKey="Ismagilov, Rustem F" sort="Ismagilov, Rustem F" uniqKey="Ismagilov R" first="Rustem F" last="Ismagilov">Rustem F. Ismagilov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15373431</idno>
<idno type="pmid">15373431</idno>
<idno type="doi">10.1021/ac0495743</idno>
<idno type="pmc">PMC1766978</idno>
<idno type="wicri:Area/Main/Corpus">000431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000431</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.</title>
<author>
<name sortKey="Zheng, Bo" sort="Zheng, Bo" uniqKey="Zheng B" first="Bo" last="Zheng">Bo Zheng</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tice, Joshua D" sort="Tice, Joshua D" uniqKey="Tice J" first="Joshua D" last="Tice">Joshua D. Tice</name>
</author>
<author>
<name sortKey="Ismagilov, Rustem F" sort="Ismagilov, Rustem F" uniqKey="Ismagilov R" first="Rustem F" last="Ismagilov">Rustem F. Ismagilov</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="ISSN">0003-2700</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium (chemistry)</term>
<term>Crystallization (MeSH)</term>
<term>Microfluidic Analytical Techniques (MeSH)</term>
<term>Microfluidics (methods)</term>
<term>Plant Proteins (analysis)</term>
<term>Solutions (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Calcium</term>
<term>Solutions</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microfluidics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Microfluidic Analytical Techniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For screening the conditions for a reaction by using droplets (or plugs) as microreactors, the composition of the droplets must be indexed. Indexing here refers to measuring the concentration of a solute by addition of a marker, either internal or external. Indexing may be performed by forming droplet pairs, where in each pair the first droplet is used to conduct the reaction, and the second droplet is used to index the composition of the first droplet. This paper characterizes a method for creating droplet pairs by generating alternating droplets, of two sets of aqueous solutions in a flow of immiscible carrier fluid within PDMS and glass microfluidic channels. The paper also demonstrates that the technique can be used to index the composition of the droplets, and this application is illustrated by screening conditions of protein crystallization. The fluid properties required to form the steady flow of the alternating droplets in a microchannel were characterized as a function of the capillary number Ca and water fraction. Four regimes were observed. At the lowest values of Ca, the droplets of the two streams coalesced; at intermediate values of Ca the alternating droplets formed reliably. At even higher values of Ca, shear forces dominated and caused formation of droplets that were smaller than the cross-sectional dimension of the channel; at the highest values of Ca, coflowing laminar streams of the two immiscible fluids formed. In addition to screening of protein crystallization conditions, understanding of the fluid flow in this system may extend this indexing approach to other chemical and biological assays performed on a microfluidic chip.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15373431</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0003-2700</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>76</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.</ArticleTitle>
<Pagination>
<MedlinePgn>4977-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>For screening the conditions for a reaction by using droplets (or plugs) as microreactors, the composition of the droplets must be indexed. Indexing here refers to measuring the concentration of a solute by addition of a marker, either internal or external. Indexing may be performed by forming droplet pairs, where in each pair the first droplet is used to conduct the reaction, and the second droplet is used to index the composition of the first droplet. This paper characterizes a method for creating droplet pairs by generating alternating droplets, of two sets of aqueous solutions in a flow of immiscible carrier fluid within PDMS and glass microfluidic channels. The paper also demonstrates that the technique can be used to index the composition of the droplets, and this application is illustrated by screening conditions of protein crystallization. The fluid properties required to form the steady flow of the alternating droplets in a microchannel were characterized as a function of the capillary number Ca and water fraction. Four regimes were observed. At the lowest values of Ca, the droplets of the two streams coalesced; at intermediate values of Ca the alternating droplets formed reliably. At even higher values of Ca, shear forces dominated and caused formation of droplets that were smaller than the cross-sectional dimension of the channel; at the highest values of Ca, coflowing laminar streams of the two immiscible fluids formed. In addition to screening of protein crystallization conditions, understanding of the fluid flow in this system may extend this indexing approach to other chemical and biological assays performed on a microfluidic chip.</AbstractText>
<CopyrightInformation>Copyright 2004 American Chemical Society</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tice</LastName>
<ForeName>Joshua D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ismagilov</LastName>
<ForeName>Rustem F</ForeName>
<Initials>RF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EB001903</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046210" MajorTopicYN="Y">Microfluidic Analytical Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044085" MajorTopicYN="N">Microfluidics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15373431</ArticleId>
<ArticleId IdType="doi">10.1021/ac0495743</ArticleId>
<ArticleId IdType="pmc">PMC1766978</ArticleId>
<ArticleId IdType="mid">NIHMS14604</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2001 Apr 30;86(18):4163-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 May 26;126(20):6327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15149230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2004 Feb 6;92(5):054503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14995311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1998 Dec 1;70(23):4974-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21644679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2004 Jan;11(1):50-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2001 Aug 27;87(9):098304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11531604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2004 May 3;43(19):2508-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2002 Jul;35(7):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2000 Jan;21(1):27-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Feb 17;42(7):768-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12596195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Dec 3;125(48):14678-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14640622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Apr 15;73(8):1831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11338598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Sep 17;125(37):11170-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16220918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 May 15;124(19):5284-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11996566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Nov 26;125(47):14613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Apr 15;75(8):1924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2003 Aug;3(3):202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2004 Mar 1;76(5):1222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Phys Lett. 2003 Dec 1;83(12):4664-4666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans A Math Phys Eng Sci. 2004 May 15;362(1818):1087-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2001 Sep;1(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2003 Sep 15;265(2):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12962676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15373431
   |texte=   Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:15373431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020