Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.

Identifieur interne : 000410 ( Main/Corpus ); précédent : 000409; suivant : 000411

Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.

Auteurs : Rosa A. Castillo Ruiz ; Carmen Herrera ; Marc Ghislain ; Christiane Gebhardt

Source :

RBID : pubmed:16133161

English descriptors

Abstract

Defence-response (DR) genes are candidates for the genetic functions underlying quantitative resistance to plant pathogens. The organization of three DR gene families encoding phenylalanine ammonia lyase (PAL), acidic PR-(pathogenesis-related) protein 5, and basic PR-5, or osmotin-like (OSM), proteins was studied in the potato genome. A bacterial artificial chromosome (BAC) library containing approximately 50,000 clones was constructed from high-molecular weight genomic DNA of the diploid potato clone PD59, a hybrid between Solanum tuberosum and S. phureja. BAC clones carrying one or more copies of the DR genes were identified and characterized by Southern hybridization, sequence analysis and genetic mapping. PAL, acidic PR-5 and OSM (basic PR-5) genes were all organized into gene families of varying complexity. The PAL gene family consisted of at least 16 members, several of which were physically linked. Four acidic PR-5 homologous were localized to a 45-kb segment on potato chromosome XII. One of these, PR-5/319, codes for the acidic thaumatin-like protein C found in intercellular fluids of potato. Nine OSM genes were organized at two loci: eight form a 90-kb cluster on chromosome VIII, and a single gene was found on chromosome XI. The topology of a phylogenetic tree based on PR-5 and OSM protein sequences from Solanaceae suggests a mode of evolution for these gene families. The results will form the basis for further studies on the potential role of these defence-related loci in quantitative resistance to pathogens.

DOI: 10.1007/s00438-005-0006-7
PubMed: 16133161

Links to Exploration step

pubmed:16133161

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.</title>
<author>
<name sortKey="Castillo Ruiz, Rosa A" sort="Castillo Ruiz, Rosa A" uniqKey="Castillo Ruiz R" first="Rosa A" last="Castillo Ruiz">Rosa A. Castillo Ruiz</name>
<affiliation>
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herrera, Carmen" sort="Herrera, Carmen" uniqKey="Herrera C" first="Carmen" last="Herrera">Carmen Herrera</name>
</author>
<author>
<name sortKey="Ghislain, Marc" sort="Ghislain, Marc" uniqKey="Ghislain M" first="Marc" last="Ghislain">Marc Ghislain</name>
</author>
<author>
<name sortKey="Gebhardt, Christiane" sort="Gebhardt, Christiane" uniqKey="Gebhardt C" first="Christiane" last="Gebhardt">Christiane Gebhardt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16133161</idno>
<idno type="pmid">16133161</idno>
<idno type="doi">10.1007/s00438-005-0006-7</idno>
<idno type="wicri:Area/Main/Corpus">000410</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000410</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.</title>
<author>
<name sortKey="Castillo Ruiz, Rosa A" sort="Castillo Ruiz, Rosa A" uniqKey="Castillo Ruiz R" first="Rosa A" last="Castillo Ruiz">Rosa A. Castillo Ruiz</name>
<affiliation>
<nlm:affiliation>Max-Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herrera, Carmen" sort="Herrera, Carmen" uniqKey="Herrera C" first="Carmen" last="Herrera">Carmen Herrera</name>
</author>
<author>
<name sortKey="Ghislain, Marc" sort="Ghislain, Marc" uniqKey="Ghislain M" first="Marc" last="Ghislain">Marc Ghislain</name>
</author>
<author>
<name sortKey="Gebhardt, Christiane" sort="Gebhardt, Christiane" uniqKey="Gebhardt C" first="Christiane" last="Gebhardt">Christiane Gebhardt</name>
</author>
</analytic>
<series>
<title level="j">Molecular genetics and genomics : MGG</title>
<idno type="ISSN">1617-4615</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>DNA, Plant (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phenylalanine Ammonia-Lyase (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Solanum tuberosum (enzymology)</term>
<term>Solanum tuberosum (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Artificial, Bacterial</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Defence-response (DR) genes are candidates for the genetic functions underlying quantitative resistance to plant pathogens. The organization of three DR gene families encoding phenylalanine ammonia lyase (PAL), acidic PR-(pathogenesis-related) protein 5, and basic PR-5, or osmotin-like (OSM), proteins was studied in the potato genome. A bacterial artificial chromosome (BAC) library containing approximately 50,000 clones was constructed from high-molecular weight genomic DNA of the diploid potato clone PD59, a hybrid between Solanum tuberosum and S. phureja. BAC clones carrying one or more copies of the DR genes were identified and characterized by Southern hybridization, sequence analysis and genetic mapping. PAL, acidic PR-5 and OSM (basic PR-5) genes were all organized into gene families of varying complexity. The PAL gene family consisted of at least 16 members, several of which were physically linked. Four acidic PR-5 homologous were localized to a 45-kb segment on potato chromosome XII. One of these, PR-5/319, codes for the acidic thaumatin-like protein C found in intercellular fluids of potato. Nine OSM genes were organized at two loci: eight form a 90-kb cluster on chromosome VIII, and a single gene was found on chromosome XI. The topology of a phylogenetic tree based on PR-5 and OSM protein sequences from Solanaceae suggests a mode of evolution for these gene families. The results will form the basis for further studies on the potential role of these defence-related loci in quantitative resistance to pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16133161</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1617-4615</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>274</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular genetics and genomics : MGG</Title>
<ISOAbbreviation>Mol Genet Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.</ArticleTitle>
<Pagination>
<MedlinePgn>168-79</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Defence-response (DR) genes are candidates for the genetic functions underlying quantitative resistance to plant pathogens. The organization of three DR gene families encoding phenylalanine ammonia lyase (PAL), acidic PR-(pathogenesis-related) protein 5, and basic PR-5, or osmotin-like (OSM), proteins was studied in the potato genome. A bacterial artificial chromosome (BAC) library containing approximately 50,000 clones was constructed from high-molecular weight genomic DNA of the diploid potato clone PD59, a hybrid between Solanum tuberosum and S. phureja. BAC clones carrying one or more copies of the DR genes were identified and characterized by Southern hybridization, sequence analysis and genetic mapping. PAL, acidic PR-5 and OSM (basic PR-5) genes were all organized into gene families of varying complexity. The PAL gene family consisted of at least 16 members, several of which were physically linked. Four acidic PR-5 homologous were localized to a 45-kb segment on potato chromosome XII. One of these, PR-5/319, codes for the acidic thaumatin-like protein C found in intercellular fluids of potato. Nine OSM genes were organized at two loci: eight form a 90-kb cluster on chromosome VIII, and a single gene was found on chromosome XI. The topology of a phylogenetic tree based on PR-5 and OSM protein sequences from Solanaceae suggests a mode of evolution for these gene families. The results will form the basis for further studies on the potential role of these defence-related loci in quantitative resistance to pathogens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Castillo Ruiz</LastName>
<ForeName>Rosa A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herrera</LastName>
<ForeName>Carmen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghislain</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gebhardt</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mol Genet Genomics</MedlineTA>
<NlmUniqueID>101093320</NlmUniqueID>
<ISSNLinking>1617-4623</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C053376">pathogenesis-related proteins, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.3.1.24</RegistryNumber>
<NameOfSubstance UI="D010650">Phenylalanine Ammonia-Lyase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010650" MajorTopicYN="N">Phenylalanine Ammonia-Lyase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16133161</ArticleId>
<ArticleId IdType="doi">10.1007/s00438-005-0006-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):867-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Jan;9(1):125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8580969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Feb;12(2):153-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 May;137(1):67-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7914505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1992 Nov;1(6):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1338696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):529-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Feb;137(1):266-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6329026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Apr;21(4):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 May;233(1-2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1351245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Aug;259(3):233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9749666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2000 Feb;43(1):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10701131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1989 Jul;78(1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):929-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Oct;3(10):1085-1094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Apr;28(1):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7787181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 25;22(23):4922-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7800481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Mar;13(3):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10707354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Sep;85(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Mar 1;204(2):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1541277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Jan;108(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1996;198(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8580772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1990 Jul;125(3):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1974227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Jun;15(6):587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12059107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2001 Apr;265(2):302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11361341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jan;10(1):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10645957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1991 Nov;83(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(2):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 Mar;11(2):223-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:79-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Dec;14(4):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1888-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000410 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000410 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16133161
   |texte=   Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16133161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020