Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The PILATUS 1M detector.

Identifieur interne : 000399 ( Main/Corpus ); précédent : 000398; suivant : 000400

The PILATUS 1M detector.

Auteurs : Ch Broennimann ; E F Eikenberry ; B. Henrich ; R. Horisberger ; G. Huelsen ; E. Pohl ; B. Schmitt ; C. Schulze-Briese ; M. Suzuki ; T. Tomizaki ; H. Toyokawa ; A. Wagner

Source :

RBID : pubmed:16495612

English descriptors

Abstract

The PILATUS 1M detector is a hybrid pixel array detector with over one million pixels that operate in single photon counting mode. The detector, designed for macromolecular crystallography, is the largest pixel array detector currently in use at a synchrotron. It is a modular system consisting of 18 multichip modules covering an area of 21 cm x 24 cm. The design of the components as well as the manufacturing of the detector including the bump-bonding was performed at the Paul Scherrer Institute (PSI). The use of a single photon counting detector for protein crystallography requires detailed studies of the charge collection properties of the silicon sensor. The 18 modules are read out in parallel, leading to a full frame readout-time of 6.7 ms. This allows crystallographic data to be acquired in fine-varphi-slicing mode with continuous rotation of the sample. The detector was tested in several experiments at the protein crystallography beamline X06SA at the Swiss Light Source at PSI. Data were collected both in conventional oscillation mode using the shutter, as well as in a fine-varphi-slicing mode. After applying all the necessary corrections to data from a thaumatin crystal, the processing of the conventional data led to satisfactory merging R-factors of the order of 8.5%. This allows, for the first time, determination of a refined electron density map of a macromolecular biological crystal using a silicon pixel detector.

DOI: 10.1107/S0909049505038665
PubMed: 16495612

Links to Exploration step

pubmed:16495612

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The PILATUS 1M detector.</title>
<author>
<name sortKey="Broennimann, Ch" sort="Broennimann, Ch" uniqKey="Broennimann C" first="Ch" last="Broennimann">Ch Broennimann</name>
<affiliation>
<nlm:affiliation>Paul Scherrer Institute, CH-5232 Villigen, Switzerland. cristian.broennimann@psi.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eikenberry, E F" sort="Eikenberry, E F" uniqKey="Eikenberry E" first="E F" last="Eikenberry">E F Eikenberry</name>
</author>
<author>
<name sortKey="Henrich, B" sort="Henrich, B" uniqKey="Henrich B" first="B" last="Henrich">B. Henrich</name>
</author>
<author>
<name sortKey="Horisberger, R" sort="Horisberger, R" uniqKey="Horisberger R" first="R" last="Horisberger">R. Horisberger</name>
</author>
<author>
<name sortKey="Huelsen, G" sort="Huelsen, G" uniqKey="Huelsen G" first="G" last="Huelsen">G. Huelsen</name>
</author>
<author>
<name sortKey="Pohl, E" sort="Pohl, E" uniqKey="Pohl E" first="E" last="Pohl">E. Pohl</name>
</author>
<author>
<name sortKey="Schmitt, B" sort="Schmitt, B" uniqKey="Schmitt B" first="B" last="Schmitt">B. Schmitt</name>
</author>
<author>
<name sortKey="Schulze Briese, C" sort="Schulze Briese, C" uniqKey="Schulze Briese C" first="C" last="Schulze-Briese">C. Schulze-Briese</name>
</author>
<author>
<name sortKey="Suzuki, M" sort="Suzuki, M" uniqKey="Suzuki M" first="M" last="Suzuki">M. Suzuki</name>
</author>
<author>
<name sortKey="Tomizaki, T" sort="Tomizaki, T" uniqKey="Tomizaki T" first="T" last="Tomizaki">T. Tomizaki</name>
</author>
<author>
<name sortKey="Toyokawa, H" sort="Toyokawa, H" uniqKey="Toyokawa H" first="H" last="Toyokawa">H. Toyokawa</name>
</author>
<author>
<name sortKey="Wagner, A" sort="Wagner, A" uniqKey="Wagner A" first="A" last="Wagner">A. Wagner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16495612</idno>
<idno type="pmid">16495612</idno>
<idno type="doi">10.1107/S0909049505038665</idno>
<idno type="wicri:Area/Main/Corpus">000399</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000399</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The PILATUS 1M detector.</title>
<author>
<name sortKey="Broennimann, Ch" sort="Broennimann, Ch" uniqKey="Broennimann C" first="Ch" last="Broennimann">Ch Broennimann</name>
<affiliation>
<nlm:affiliation>Paul Scherrer Institute, CH-5232 Villigen, Switzerland. cristian.broennimann@psi.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eikenberry, E F" sort="Eikenberry, E F" uniqKey="Eikenberry E" first="E F" last="Eikenberry">E F Eikenberry</name>
</author>
<author>
<name sortKey="Henrich, B" sort="Henrich, B" uniqKey="Henrich B" first="B" last="Henrich">B. Henrich</name>
</author>
<author>
<name sortKey="Horisberger, R" sort="Horisberger, R" uniqKey="Horisberger R" first="R" last="Horisberger">R. Horisberger</name>
</author>
<author>
<name sortKey="Huelsen, G" sort="Huelsen, G" uniqKey="Huelsen G" first="G" last="Huelsen">G. Huelsen</name>
</author>
<author>
<name sortKey="Pohl, E" sort="Pohl, E" uniqKey="Pohl E" first="E" last="Pohl">E. Pohl</name>
</author>
<author>
<name sortKey="Schmitt, B" sort="Schmitt, B" uniqKey="Schmitt B" first="B" last="Schmitt">B. Schmitt</name>
</author>
<author>
<name sortKey="Schulze Briese, C" sort="Schulze Briese, C" uniqKey="Schulze Briese C" first="C" last="Schulze-Briese">C. Schulze-Briese</name>
</author>
<author>
<name sortKey="Suzuki, M" sort="Suzuki, M" uniqKey="Suzuki M" first="M" last="Suzuki">M. Suzuki</name>
</author>
<author>
<name sortKey="Tomizaki, T" sort="Tomizaki, T" uniqKey="Tomizaki T" first="T" last="Tomizaki">T. Tomizaki</name>
</author>
<author>
<name sortKey="Toyokawa, H" sort="Toyokawa, H" uniqKey="Toyokawa H" first="H" last="Toyokawa">H. Toyokawa</name>
</author>
<author>
<name sortKey="Wagner, A" sort="Wagner, A" uniqKey="Wagner A" first="A" last="Wagner">A. Wagner</name>
</author>
</analytic>
<series>
<title level="j">Journal of synchrotron radiation</title>
<idno type="ISSN">0909-0495</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallography, X-Ray (instrumentation)</term>
<term>Equipment Design (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Silicon (MeSH)</term>
<term>Synchrotrons (instrumentation)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Synchrotrons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Equipment Design</term>
<term>Silicon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The PILATUS 1M detector is a hybrid pixel array detector with over one million pixels that operate in single photon counting mode. The detector, designed for macromolecular crystallography, is the largest pixel array detector currently in use at a synchrotron. It is a modular system consisting of 18 multichip modules covering an area of 21 cm x 24 cm. The design of the components as well as the manufacturing of the detector including the bump-bonding was performed at the Paul Scherrer Institute (PSI). The use of a single photon counting detector for protein crystallography requires detailed studies of the charge collection properties of the silicon sensor. The 18 modules are read out in parallel, leading to a full frame readout-time of 6.7 ms. This allows crystallographic data to be acquired in fine-varphi-slicing mode with continuous rotation of the sample. The detector was tested in several experiments at the protein crystallography beamline X06SA at the Swiss Light Source at PSI. Data were collected both in conventional oscillation mode using the shutter, as well as in a fine-varphi-slicing mode. After applying all the necessary corrections to data from a thaumatin crystal, the processing of the conventional data led to satisfactory merging R-factors of the order of 8.5%. This allows, for the first time, determination of a refined electron density map of a macromolecular biological crystal using a silicon pixel detector.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16495612</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0909-0495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>Pt 2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of synchrotron radiation</Title>
<ISOAbbreviation>J Synchrotron Radiat</ISOAbbreviation>
</Journal>
<ArticleTitle>The PILATUS 1M detector.</ArticleTitle>
<Pagination>
<MedlinePgn>120-30</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The PILATUS 1M detector is a hybrid pixel array detector with over one million pixels that operate in single photon counting mode. The detector, designed for macromolecular crystallography, is the largest pixel array detector currently in use at a synchrotron. It is a modular system consisting of 18 multichip modules covering an area of 21 cm x 24 cm. The design of the components as well as the manufacturing of the detector including the bump-bonding was performed at the Paul Scherrer Institute (PSI). The use of a single photon counting detector for protein crystallography requires detailed studies of the charge collection properties of the silicon sensor. The 18 modules are read out in parallel, leading to a full frame readout-time of 6.7 ms. This allows crystallographic data to be acquired in fine-varphi-slicing mode with continuous rotation of the sample. The detector was tested in several experiments at the protein crystallography beamline X06SA at the Swiss Light Source at PSI. Data were collected both in conventional oscillation mode using the shutter, as well as in a fine-varphi-slicing mode. After applying all the necessary corrections to data from a thaumatin crystal, the processing of the conventional data led to satisfactory merging R-factors of the order of 8.5%. This allows, for the first time, determination of a refined electron density map of a macromolecular biological crystal using a silicon pixel detector.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Broennimann</LastName>
<ForeName>Ch</ForeName>
<Initials>Ch</Initials>
<AffiliationInfo>
<Affiliation>Paul Scherrer Institute, CH-5232 Villigen, Switzerland. cristian.broennimann@psi.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eikenberry</LastName>
<ForeName>E F</ForeName>
<Initials>EF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Henrich</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Horisberger</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huelsen</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pohl</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmitt</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulze-Briese</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tomizaki</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Toyokawa</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Synchrotron Radiat</MedlineTA>
<NlmUniqueID>9888878</NlmUniqueID>
<ISSNLinking>0909-0495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance UI="D012825">Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004867" MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012825" MajorTopicYN="N">Silicon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017356" MajorTopicYN="N">Synchrotrons</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16495612</ArticleId>
<ArticleId IdType="pii">S0909049505038665</ArticleId>
<ArticleId IdType="doi">10.1107/S0909049505038665</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000399 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000399 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16495612
   |texte=   The PILATUS 1M detector.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16495612" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020