Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.

Identifieur interne : 000259 ( Main/Corpus ); précédent : 000258; suivant : 000260

Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.

Auteurs : Chitra Rajendran ; Florian S N. Dworkowski ; Meitian Wang ; Clemens Schulze-Briese

Source :

RBID : pubmed:21525639

Abstract

The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.

DOI: 10.1107/S090904951100968X
PubMed: 21525639
PubMed Central: PMC3133521

Links to Exploration step

pubmed:21525639

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.</title>
<author>
<name sortKey="Rajendran, Chitra" sort="Rajendran, Chitra" uniqKey="Rajendran C" first="Chitra" last="Rajendran">Chitra Rajendran</name>
<affiliation>
<nlm:affiliation>Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. chitra.rajendran@psi.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dworkowski, Florian S N" sort="Dworkowski, Florian S N" uniqKey="Dworkowski F" first="Florian S N" last="Dworkowski">Florian S N. Dworkowski</name>
</author>
<author>
<name sortKey="Wang, Meitian" sort="Wang, Meitian" uniqKey="Wang M" first="Meitian" last="Wang">Meitian Wang</name>
</author>
<author>
<name sortKey="Schulze Briese, Clemens" sort="Schulze Briese, Clemens" uniqKey="Schulze Briese C" first="Clemens" last="Schulze-Briese">Clemens Schulze-Briese</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21525639</idno>
<idno type="pmid">21525639</idno>
<idno type="doi">10.1107/S090904951100968X</idno>
<idno type="pmc">PMC3133521</idno>
<idno type="wicri:Area/Main/Corpus">000259</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000259</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.</title>
<author>
<name sortKey="Rajendran, Chitra" sort="Rajendran, Chitra" uniqKey="Rajendran C" first="Chitra" last="Rajendran">Chitra Rajendran</name>
<affiliation>
<nlm:affiliation>Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. chitra.rajendran@psi.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dworkowski, Florian S N" sort="Dworkowski, Florian S N" uniqKey="Dworkowski F" first="Florian S N" last="Dworkowski">Florian S N. Dworkowski</name>
</author>
<author>
<name sortKey="Wang, Meitian" sort="Wang, Meitian" uniqKey="Wang M" first="Meitian" last="Wang">Meitian Wang</name>
</author>
<author>
<name sortKey="Schulze Briese, Clemens" sort="Schulze Briese, Clemens" uniqKey="Schulze Briese C" first="Clemens" last="Schulze-Briese">Clemens Schulze-Briese</name>
</author>
</analytic>
<series>
<title level="j">Journal of synchrotron radiation</title>
<idno type="eISSN">1600-5775</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21525639</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1600-5775</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>Pt 3</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of synchrotron radiation</Title>
<ISOAbbreviation>J Synchrotron Radiat</ISOAbbreviation>
</Journal>
<ArticleTitle>Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.</ArticleTitle>
<Pagination>
<MedlinePgn>318-28</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S090904951100968X</ELocationID>
<Abstract>
<AbstractText>The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rajendran</LastName>
<ForeName>Chitra</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. chitra.rajendran@psi.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dworkowski</LastName>
<ForeName>Florian S N</ForeName>
<Initials>FS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Meitian</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulze-Briese</LastName>
<ForeName>Clemens</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Synchrotron Radiat</MedlineTA>
<NlmUniqueID>9888878</NlmUniqueID>
<ISSNLinking>0909-0495</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21525639</ArticleId>
<ArticleId IdType="pii">S090904951100968X</ArticleId>
<ArticleId IdType="doi">10.1107/S090904951100968X</ArticleId>
<ArticleId IdType="pmc">PMC3133521</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2004 Jun 1;37(Pt 3):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Jul 1;9(Pt 4):198-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Dec;15(12):1531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biophys. 2004 May;37(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15999418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Sep 25;106(3):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">978739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2000 Sep 1;7(Pt 5):313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16609214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Oct;15(5):538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jan;11(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Mar;58(Pt 3):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Oct;66(Pt 10):1092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20944242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1978 Nov 5;125(3):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">731699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11742-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Aug 23;44(33):11171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):813-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2009 Dec;65(Pt 12):1237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Oct;55(Pt 10):1641-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10531512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1094-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000259 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000259 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21525639
   |texte=   Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21525639" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020