Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein dynamical transition at 110 K.

Identifieur interne : 000242 ( Main/Corpus ); précédent : 000241; suivant : 000243

Protein dynamical transition at 110 K.

Auteurs : Chae Un Kim ; Mark W. Tate ; Sol M. Gruner

Source :

RBID : pubmed:22167801

English descriptors

Abstract

Proteins are known to undergo a dynamical transition at around 200 K but the underlying mechanism, physical origin, and relationship to water are controversial. Here we report an observation of a protein dynamical transition as low as 110 K. This unexpected protein dynamical transition precisely correlated with the cryogenic phase transition of water from a high-density amorphous to a low-density amorphous state. The results suggest that the cryogenic protein dynamical transition might be directly related to the two liquid forms of water proposed at cryogenic temperatures.

DOI: 10.1073/pnas.1110840108
PubMed: 22167801
PubMed Central: PMC3248492

Links to Exploration step

pubmed:22167801

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein dynamical transition at 110 K.</title>
<author>
<name sortKey="Kim, Chae Un" sort="Kim, Chae Un" uniqKey="Kim C" first="Chae Un" last="Kim">Chae Un Kim</name>
<affiliation>
<nlm:affiliation>Cornell High Energy Synchrotron Source, Laboratory of Atomic and Solid State Physics, and Department of Physics, Cornell University, Ithaca, NY 14853, USA. ck243@cornell.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Mark W" sort="Tate, Mark W" uniqKey="Tate M" first="Mark W" last="Tate">Mark W. Tate</name>
</author>
<author>
<name sortKey="Gruner, Sol M" sort="Gruner, Sol M" uniqKey="Gruner S" first="Sol M" last="Gruner">Sol M. Gruner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22167801</idno>
<idno type="pmid">22167801</idno>
<idno type="doi">10.1073/pnas.1110840108</idno>
<idno type="pmc">PMC3248492</idno>
<idno type="wicri:Area/Main/Corpus">000242</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000242</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein dynamical transition at 110 K.</title>
<author>
<name sortKey="Kim, Chae Un" sort="Kim, Chae Un" uniqKey="Kim C" first="Chae Un" last="Kim">Chae Un Kim</name>
<affiliation>
<nlm:affiliation>Cornell High Energy Synchrotron Source, Laboratory of Atomic and Solid State Physics, and Department of Physics, Cornell University, Ithaca, NY 14853, USA. ck243@cornell.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tate, Mark W" sort="Tate, Mark W" uniqKey="Tate M" first="Mark W" last="Tate">Mark W. Tate</name>
</author>
<author>
<name sortKey="Gruner, Sol M" sort="Gruner, Sol M" uniqKey="Gruner S" first="Sol M" last="Gruner">Sol M. Gruner</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cold Temperature (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Pressure (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Crystallography, X-Ray</term>
<term>Pressure</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Proteins are known to undergo a dynamical transition at around 200 K but the underlying mechanism, physical origin, and relationship to water are controversial. Here we report an observation of a protein dynamical transition as low as 110 K. This unexpected protein dynamical transition precisely correlated with the cryogenic phase transition of water from a high-density amorphous to a low-density amorphous state. The results suggest that the cryogenic protein dynamical transition might be directly related to the two liquid forms of water proposed at cryogenic temperatures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22167801</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein dynamical transition at 110 K.</ArticleTitle>
<Pagination>
<MedlinePgn>20897-901</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1110840108</ELocationID>
<Abstract>
<AbstractText>Proteins are known to undergo a dynamical transition at around 200 K but the underlying mechanism, physical origin, and relationship to water are controversial. Here we report an observation of a protein dynamical transition as low as 110 K. This unexpected protein dynamical transition precisely correlated with the cryogenic phase transition of water from a high-density amorphous to a low-density amorphous state. The results suggest that the cryogenic protein dynamical transition might be directly related to the two liquid forms of water proposed at cryogenic temperatures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Chae Un</ForeName>
<Initials>CU</Initials>
<AffiliationInfo>
<Affiliation>Cornell High Energy Synchrotron Source, Laboratory of Atomic and Solid State Physics, and Department of Physics, Cornell University, Ithaca, NY 14853, USA. ck243@cornell.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Mark W</ForeName>
<Initials>MW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gruner</LastName>
<ForeName>Sol M</ForeName>
<Initials>SM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 RR001646</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR-01646</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011312" MajorTopicYN="N">Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22167801</ArticleId>
<ArticleId IdType="pii">1110840108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1110840108</ArticleId>
<ArticleId IdType="pmc">PMC3248492</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2000 Jan;7(1):34-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 9;404(6774):205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10724176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 24;411(6836):501-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2001 Sep;30(5):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2335-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2002 Apr 1;88(13):138101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11955127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16047-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12444262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Sep;85(3):1871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12944299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2003 Sep;105(2-3):667-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14499926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2004 Sep;87(3):1436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Mar 10;31(9):2469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2004 Dec 10;93(24):245702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15697826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2005 Jul 15;95(3):038101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16090773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jun 26;256(5065):1796-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1615323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9012-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Oct 1;91(7):2573-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2006 Oct 27;97(17):177802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17155508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1971 Jan 8;171(3966):62-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17737992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2008 May 21;128(19):195106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18500904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Sep 15;95(6):2916-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2008 Oct 24;101(17):178103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4596-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Apr 16;113(15):5001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jan;1804(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2010 Mar 5;104(9):098101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2010 Sep 21;12(35):10215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010 Aug 26;6(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21230323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Feb 23;337(6209):754-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2918910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1986;131:389-433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3773767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1979 Aug 16;280(5723):558-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">460437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Aug;79(16):4967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6956905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 3;33(17):5128-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8172888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8415760</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22167801
   |texte=   Protein dynamical transition at 110 K.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22167801" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020