Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

Identifieur interne : 000181 ( Main/Corpus ); précédent : 000180; suivant : 000182

Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.

Auteurs : Nobutaka Shimizu ; Tetsuya Shimizu ; Seiki Baba ; Kazuya Hasegawa ; Masaki Yamamoto ; Takashi Kumasaka

Source :

RBID : pubmed:24121346

Abstract

Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.

DOI: 10.1107/S0909049513022887
PubMed: 24121346
PubMed Central: PMC3795562

Links to Exploration step

pubmed:24121346

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.</title>
<author>
<name sortKey="Shimizu, Nobutaka" sort="Shimizu, Nobutaka" uniqKey="Shimizu N" first="Nobutaka" last="Shimizu">Nobutaka Shimizu</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Tetsuya" sort="Shimizu, Tetsuya" uniqKey="Shimizu T" first="Tetsuya" last="Shimizu">Tetsuya Shimizu</name>
</author>
<author>
<name sortKey="Baba, Seiki" sort="Baba, Seiki" uniqKey="Baba S" first="Seiki" last="Baba">Seiki Baba</name>
</author>
<author>
<name sortKey="Hasegawa, Kazuya" sort="Hasegawa, Kazuya" uniqKey="Hasegawa K" first="Kazuya" last="Hasegawa">Kazuya Hasegawa</name>
</author>
<author>
<name sortKey="Yamamoto, Masaki" sort="Yamamoto, Masaki" uniqKey="Yamamoto M" first="Masaki" last="Yamamoto">Masaki Yamamoto</name>
</author>
<author>
<name sortKey="Kumasaka, Takashi" sort="Kumasaka, Takashi" uniqKey="Kumasaka T" first="Takashi" last="Kumasaka">Takashi Kumasaka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24121346</idno>
<idno type="pmid">24121346</idno>
<idno type="doi">10.1107/S0909049513022887</idno>
<idno type="pmc">PMC3795562</idno>
<idno type="wicri:Area/Main/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.</title>
<author>
<name sortKey="Shimizu, Nobutaka" sort="Shimizu, Nobutaka" uniqKey="Shimizu N" first="Nobutaka" last="Shimizu">Nobutaka Shimizu</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shimizu, Tetsuya" sort="Shimizu, Tetsuya" uniqKey="Shimizu T" first="Tetsuya" last="Shimizu">Tetsuya Shimizu</name>
</author>
<author>
<name sortKey="Baba, Seiki" sort="Baba, Seiki" uniqKey="Baba S" first="Seiki" last="Baba">Seiki Baba</name>
</author>
<author>
<name sortKey="Hasegawa, Kazuya" sort="Hasegawa, Kazuya" uniqKey="Hasegawa K" first="Kazuya" last="Hasegawa">Kazuya Hasegawa</name>
</author>
<author>
<name sortKey="Yamamoto, Masaki" sort="Yamamoto, Masaki" uniqKey="Yamamoto M" first="Masaki" last="Yamamoto">Masaki Yamamoto</name>
</author>
<author>
<name sortKey="Kumasaka, Takashi" sort="Kumasaka, Takashi" uniqKey="Kumasaka T" first="Takashi" last="Kumasaka">Takashi Kumasaka</name>
</author>
</analytic>
<series>
<title level="j">Journal of synchrotron radiation</title>
<idno type="eISSN">1600-5775</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24121346</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1600-5775</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>Pt 6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of synchrotron radiation</Title>
<ISOAbbreviation>J Synchrotron Radiat</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.</ArticleTitle>
<Pagination>
<MedlinePgn>948-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S0909049513022887</ELocationID>
<Abstract>
<AbstractText>Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shimizu</LastName>
<ForeName>Nobutaka</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Group, SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shimizu</LastName>
<ForeName>Tetsuya</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baba</LastName>
<ForeName>Seiki</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hasegawa</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Masaki</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumasaka</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Synchrotron Radiat</MedlineTA>
<NlmUniqueID>9888878</NlmUniqueID>
<ISSNLinking>0909-0495</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">SPring-8</Keyword>
<Keyword MajorTopicYN="N">UV–visible spectroscopy</Keyword>
<Keyword MajorTopicYN="N">microspectroscopy</Keyword>
<Keyword MajorTopicYN="N">protein crystallography</Keyword>
<Keyword MajorTopicYN="N">radiation damage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24121346</ArticleId>
<ArticleId IdType="pii">S0909049513022887</ArticleId>
<ArticleId IdType="doi">10.1107/S0909049513022887</ArticleId>
<ArticleId IdType="pmc">PMC3795562</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):342-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 29;324(3):469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2003 Aug;78(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12945580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):11-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):381-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2012 Aug;80(8):2035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22499059</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24121346
   |texte=   Development of an online UV-visible microspectrophotometer for a macromolecular crystallography beamline.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24121346" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020