Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis.

Identifieur interne : 000007 ( Main/Corpus ); précédent : 000006; suivant : 000008

Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis.

Auteurs : Michael Gétaz ; Joanna Puławska ; Theo H M. Smits ; Joël F. Pothier

Source :

RBID : pubmed:32824783

Abstract

Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most X. fragariae genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of X. fragariae with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.

DOI: 10.3390/microorganisms8081253
PubMed: 32824783
PubMed Central: PMC7465820

Links to Exploration step

pubmed:32824783

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host-Pathogen Interactions between
<i>Xanthomonas fragariae</i>
and Its Host
<i>Fragaria</i>
×
<i>ananassa</i>
Investigated with a Dual RNA-Seq Analysis.</title>
<author>
<name sortKey="Getaz, Michael" sort="Getaz, Michael" uniqKey="Getaz M" first="Michael" last="Gétaz">Michael Gétaz</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pulawska, Joanna" sort="Pulawska, Joanna" uniqKey="Pulawska J" first="Joanna" last="Puławska">Joanna Puławska</name>
<affiliation>
<nlm:affiliation>Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smits, Theo H M" sort="Smits, Theo H M" uniqKey="Smits T" first="Theo H M" last="Smits">Theo H M. Smits</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pothier, Joel F" sort="Pothier, Joel F" uniqKey="Pothier J" first="Joël F" last="Pothier">Joël F. Pothier</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32824783</idno>
<idno type="pmid">32824783</idno>
<idno type="doi">10.3390/microorganisms8081253</idno>
<idno type="pmc">PMC7465820</idno>
<idno type="wicri:Area/Main/Corpus">000007</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000007</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host-Pathogen Interactions between
<i>Xanthomonas fragariae</i>
and Its Host
<i>Fragaria</i>
×
<i>ananassa</i>
Investigated with a Dual RNA-Seq Analysis.</title>
<author>
<name sortKey="Getaz, Michael" sort="Getaz, Michael" uniqKey="Getaz M" first="Michael" last="Gétaz">Michael Gétaz</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pulawska, Joanna" sort="Pulawska, Joanna" uniqKey="Pulawska J" first="Joanna" last="Puławska">Joanna Puławska</name>
<affiliation>
<nlm:affiliation>Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smits, Theo H M" sort="Smits, Theo H M" uniqKey="Smits T" first="Theo H M" last="Smits">Theo H M. Smits</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pothier, Joel F" sort="Pothier, Joel F" uniqKey="Pothier J" first="Joël F" last="Pothier">Joël F. Pothier</name>
<affiliation>
<nlm:affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microorganisms</title>
<idno type="ISSN">2076-2607</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them,
<i>Xanthomonas fragariae</i>
is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in
<i>X. fragariae</i>
expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most
<i>X. fragariae</i>
genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of
<i>X. fragariae</i>
with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32824783</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-2607</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Microorganisms</Title>
<ISOAbbreviation>Microorganisms</ISOAbbreviation>
</Journal>
<ArticleTitle>Host-Pathogen Interactions between
<i>Xanthomonas fragariae</i>
and Its Host
<i>Fragaria</i>
×
<i>ananassa</i>
Investigated with a Dual RNA-Seq Analysis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1253</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/microorganisms8081253</ELocationID>
<Abstract>
<AbstractText>Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them,
<i>Xanthomonas fragariae</i>
is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in
<i>X. fragariae</i>
expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most
<i>X. fragariae</i>
genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of
<i>X. fragariae</i>
with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gétaz</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puławska</LastName>
<ForeName>Joanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smits</LastName>
<ForeName>Theo H M</ForeName>
<Initials>THM</Initials>
<Identifier Source="ORCID">0000-0002-1237-235X</Identifier>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pothier</LastName>
<ForeName>Joël F</ForeName>
<Initials>JF</Initials>
<Identifier Source="ORCID">0000-0002-9604-7780</Identifier>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>613678</GrantID>
<Agency>Seventh Framework Programme</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Microorganisms</MedlineTA>
<NlmUniqueID>101625893</NlmUniqueID>
<ISSNLinking>2076-2607</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RNA-sequencing</Keyword>
<Keyword MajorTopicYN="N">plant inoculation</Keyword>
<Keyword MajorTopicYN="N">strawberry</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
<Keyword MajorTopicYN="N">virulence factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32824783</ArticleId>
<ArticleId IdType="pii">microorganisms8081253</ArticleId>
<ArticleId IdType="doi">10.3390/microorganisms8081253</ArticleId>
<ArticleId IdType="pmc">PMC7465820</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2017 May;90(4):720-737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27870294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Dec;66(5):1192-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Mar 1;537(1):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24321691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2012;35(6):824-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jan 28;5:8092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25627558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Oct 13;7:1589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27790193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2014;21(2):169-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24282021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 17;6:21600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26883568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2018 Feb 1;7(2):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29253147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Apr;17(3):313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2016 Apr 22;84(5):1424-1437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26902727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2013 Jan;Chapter 22:Unit 22.1.</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23288464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Nov 13;18(1):868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29132313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 15;7:42724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28198457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2008 Apr;46(2):214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18545972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2014 Feb 17;12(2):1023-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Genom. 2018 Jul;4(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29874158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Mar 9;64(9):1889-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26890088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Jun;29(6):508-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27003800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1019-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 04;8:475</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28421102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Aug;70(2):379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Oct 23;7(1):13737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29062051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1971 Jul;107(1):385-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4935328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Apr;186(8):2309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15060033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2009 Oct 20;139(1-2):80-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Sep;7(9):1082-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21606681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Apr 19;367(1592):1102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22411981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26370934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Feb;15(2):598-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26637540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):909-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2017 Oct 3;8(7):1378-1389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28448786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pathol. 2002 Aug;55(4):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 26;8(9):e75867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Feb 19;17(2):259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26907259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1103-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21041374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2013 Jan;66(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Aug;25(8):1083-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22550958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jun;67(13):3845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26994477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16921475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 7;7(1):4879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28687734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):778-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2016 Nov 10;4(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27834715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Feb;132(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Nov;52(11):1873-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21984602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8792-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8415609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jun;6(6):783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21969955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Dec;3(6):455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11074375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2006 Apr;90(4):384-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30786583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Feb 26;483(7388):182-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 27;7(1):4269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2014 Mar;160(Pt 3):576-588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2015 Jun;3(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26185074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2012 Nov;12(21):3180-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22965736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21084388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jan;190(1):343-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 20;289(25):17872-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24794869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Dec;225(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16807755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Mar;1858(3):526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Nov 11;11:159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Oct;27(10):1132-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25180689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2012;66:453-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22746332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2013 Oct;97(10):1358-1362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30722134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2016 Oct;291(5):1967-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27447867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Jun 01;1:15074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27250009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2017 Aug 10;5(32):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28798165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Nov 25;14:829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2012 Jan;26(1):219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 May;12(5):647-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10810141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18614-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32824783
   |texte=   Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32824783" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020