Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.

Identifieur interne : 000158 ( Main/Corpus ); précédent : 000157; suivant : 000159

Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.

Auteurs : Peter N. Dodds ; Gregory J. Lawrence ; Ann-Maree Catanzariti ; Trazel Teh ; Ching-I A. Wang ; Michael A. Ayliffe ; Bostjan Kobe ; Jeffrey G. Ellis

Source :

RBID : pubmed:16731621

English descriptors

Abstract

Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.

DOI: 10.1073/pnas.0602577103
PubMed: 16731621
PubMed Central: PMC1482673

Links to Exploration step

pubmed:16731621

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.</title>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. peter.dodds@csiro.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Catanzariti, Ann Maree" sort="Catanzariti, Ann Maree" uniqKey="Catanzariti A" first="Ann-Maree" last="Catanzariti">Ann-Maree Catanzariti</name>
</author>
<author>
<name sortKey="Teh, Trazel" sort="Teh, Trazel" uniqKey="Teh T" first="Trazel" last="Teh">Trazel Teh</name>
</author>
<author>
<name sortKey="Wang, Ching I A" sort="Wang, Ching I A" uniqKey="Wang C" first="Ching-I A" last="Wang">Ching-I A. Wang</name>
</author>
<author>
<name sortKey="Ayliffe, Michael A" sort="Ayliffe, Michael A" uniqKey="Ayliffe M" first="Michael A" last="Ayliffe">Michael A. Ayliffe</name>
</author>
<author>
<name sortKey="Kobe, Bostjan" sort="Kobe, Bostjan" uniqKey="Kobe B" first="Bostjan" last="Kobe">Bostjan Kobe</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16731621</idno>
<idno type="pmid">16731621</idno>
<idno type="doi">10.1073/pnas.0602577103</idno>
<idno type="pmc">PMC1482673</idno>
<idno type="wicri:Area/Main/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.</title>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. peter.dodds@csiro.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Catanzariti, Ann Maree" sort="Catanzariti, Ann Maree" uniqKey="Catanzariti A" first="Ann-Maree" last="Catanzariti">Ann-Maree Catanzariti</name>
</author>
<author>
<name sortKey="Teh, Trazel" sort="Teh, Trazel" uniqKey="Teh T" first="Trazel" last="Teh">Trazel Teh</name>
</author>
<author>
<name sortKey="Wang, Ching I A" sort="Wang, Ching I A" uniqKey="Wang C" first="Ching-I A" last="Wang">Ching-I A. Wang</name>
</author>
<author>
<name sortKey="Ayliffe, Michael A" sort="Ayliffe, Michael A" uniqKey="Ayliffe M" first="Michael A" last="Ayliffe">Michael A. Ayliffe</name>
</author>
<author>
<name sortKey="Kobe, Bostjan" sort="Kobe, Bostjan" uniqKey="Kobe B" first="Bostjan" last="Kobe">Bostjan Kobe</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acids (genetics)</term>
<term>Binding Sites (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Flax (genetics)</term>
<term>Fungi (genetics)</term>
<term>Fungi (pathogenicity)</term>
<term>Genes, Plant (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Protein Binding (MeSH)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Binding Sites</term>
<term>Flax</term>
<term>Fungi</term>
<term>Genes, Plant</term>
<term>Mutation</term>
<term>Plant Diseases</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Selection, Genetic</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16731621</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>103</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jun</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.</ArticleTitle>
<Pagination>
<MedlinePgn>8888-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. peter.dodds@csiro.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Gregory J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Catanzariti</LastName>
<ForeName>Ann-Maree</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teh</LastName>
<ForeName>Trazel</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ching-I A</ForeName>
<Initials>CI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ayliffe</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kobe</LastName>
<ForeName>Bostjan</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>DQ507819</AccessionNumber>
<AccessionNumber>DQ507820</AccessionNumber>
<AccessionNumber>DQ507821</AccessionNumber>
<AccessionNumber>DQ507822</AccessionNumber>
<AccessionNumber>DQ507823</AccessionNumber>
<AccessionNumber>DQ507824</AccessionNumber>
<AccessionNumber>DQ507825</AccessionNumber>
<AccessionNumber>DQ507826</AccessionNumber>
<AccessionNumber>DQ507827</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8575-6</RefSource>
<PMID Version="1">16735473</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
<ArticleId IdType="pii">0602577103</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0602577103</ArticleId>
<ArticleId IdType="pmc">PMC1482673</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2003 Feb;163(2):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 7;112(3):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 29;301(5637):1230-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Mar;166(3):1517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15082565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 May;13(5):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W532-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Sep 8;335(6186):167-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3412472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1993 Jun;6(4):383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Jun;6(6):1352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9194198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Nov;8(11):1113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Aug 12;400(6745):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10458161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jun;18(6):570-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15986927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8024-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jun 2;299(2):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Aug 1;19(15):4004-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2000 Dec 15;287(2):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Oct;6(10):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Feb;7(2):67-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Mar 22;108(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11955429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2003 Feb;15(1):20-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 7;112(3):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16731621
   |texte=   Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16731621" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020