Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (Puccinia triticina).

Identifieur interne : 000026 ( Main/Corpus ); précédent : 000025; suivant : 000027

Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (Puccinia triticina).

Auteurs : Christof Rampitsch ; Mei Huang ; Slavica Djuric-Cignaovic ; Xiben Wang ; Ursla Fernando

Source :

RBID : pubmed:31708941

Abstract

Wheat leaf rust caused by the pathogenic fungus, Puccinia triticina, is a serious threat to bread wheat and durum production in many areas of the world. This plant-pathogen interaction has been studied extensively at the molecular genetics level however, proteomics data are still relatively scarce. The present study investigated temporal changes in the abundance of the apoplastic fluid proteome of resistant and susceptible wheat leaves infected with P. triticina race-1, using a label-free LC-MS-based approach. In general, there was very little difference between inoculated and control apoplastic proteomes in either host, until haustoria had become well established in the susceptible host, although the resistant host responds to pathogen challenge sooner. In the earlier samplings (up to 72 h after inoculation) there were just 46 host proteins with significantly changing abundance, and pathogen proteins were detected only rarely and not reproducibly. This is consistent with the biotrophic lifestyle of P. triticina, where the invading pathogen initially causes little tissue damage or host cell death, which occur only later during the infection cycle. The majority of the host proteins with altered abundance up to 72 h post-inoculation were pathogen-response-related, including peroxidases, chitinases, β-1-3-endo-glucanases, and other PR proteins. Five days after inoculation with the susceptible apoplasm it was possible to detect 150 P. triticina proteins and 117 host proteins which had significantly increased in abundance as well as 33 host proteins which had significantly decreased in abundance. The latter represents potential targets of pathogen effectors and included enzymes which could damage the invader. The pathogen-expressed proteins-seen most abundantly in the incompatible interaction-were mostly uncharacterized proteins however, many of their functions could be inferred through homology-matching with pBLAST. Pathogen proteins also included several candidate effector proteins, some novel, and some which have been reported previously. All MS data have been deposited in the PRIDE archive (www.ebi.ac.uk/pride/archive/) under Project PXD012586.

DOI: 10.3389/fpls.2019.01291
PubMed: 31708941
PubMed Central: PMC6819374

Links to Exploration step

pubmed:31708941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (
<i>Puccinia triticina</i>
).</title>
<author>
<name sortKey="Rampitsch, Christof" sort="Rampitsch, Christof" uniqKey="Rampitsch C" first="Christof" last="Rampitsch">Christof Rampitsch</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mei" sort="Huang, Mei" uniqKey="Huang M" first="Mei" last="Huang">Mei Huang</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Djuric Cignaovic, Slavica" sort="Djuric Cignaovic, Slavica" uniqKey="Djuric Cignaovic S" first="Slavica" last="Djuric-Cignaovic">Slavica Djuric-Cignaovic</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiben" sort="Wang, Xiben" uniqKey="Wang X" first="Xiben" last="Wang">Xiben Wang</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernando, Ursla" sort="Fernando, Ursla" uniqKey="Fernando U" first="Ursla" last="Fernando">Ursla Fernando</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31708941</idno>
<idno type="pmid">31708941</idno>
<idno type="doi">10.3389/fpls.2019.01291</idno>
<idno type="pmc">PMC6819374</idno>
<idno type="wicri:Area/Main/Corpus">000026</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000026</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (
<i>Puccinia triticina</i>
).</title>
<author>
<name sortKey="Rampitsch, Christof" sort="Rampitsch, Christof" uniqKey="Rampitsch C" first="Christof" last="Rampitsch">Christof Rampitsch</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mei" sort="Huang, Mei" uniqKey="Huang M" first="Mei" last="Huang">Mei Huang</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Djuric Cignaovic, Slavica" sort="Djuric Cignaovic, Slavica" uniqKey="Djuric Cignaovic S" first="Slavica" last="Djuric-Cignaovic">Slavica Djuric-Cignaovic</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiben" sort="Wang, Xiben" uniqKey="Wang X" first="Xiben" last="Wang">Xiben Wang</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernando, Ursla" sort="Fernando, Ursla" uniqKey="Fernando U" first="Ursla" last="Fernando">Ursla Fernando</name>
<affiliation>
<nlm:affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wheat leaf rust caused by the pathogenic fungus,
<i>Puccinia triticina</i>
, is a serious threat to bread wheat and durum production in many areas of the world. This plant-pathogen interaction has been studied extensively at the molecular genetics level however, proteomics data are still relatively scarce. The present study investigated temporal changes in the abundance of the apoplastic fluid proteome of resistant and susceptible wheat leaves infected with
<i>P. triticina</i>
race-1, using a label-free LC-MS-based approach. In general, there was very little difference between inoculated and control apoplastic proteomes in either host, until haustoria had become well established in the susceptible host, although the resistant host responds to pathogen challenge sooner. In the earlier samplings (up to 72 h after inoculation) there were just 46 host proteins with significantly changing abundance, and pathogen proteins were detected only rarely and not reproducibly. This is consistent with the biotrophic lifestyle of
<i>P. triticina</i>
, where the invading pathogen initially causes little tissue damage or host cell death, which occur only later during the infection cycle. The majority of the host proteins with altered abundance up to 72 h post-inoculation were pathogen-response-related, including peroxidases, chitinases, β-1-3-endo-glucanases, and other PR proteins. Five days after inoculation with the susceptible apoplasm it was possible to detect 150
<i>P. triticina</i>
proteins and 117 host proteins which had significantly increased in abundance as well as 33 host proteins which had significantly decreased in abundance. The latter represents potential targets of pathogen effectors and included enzymes which could damage the invader. The pathogen-expressed proteins-seen most abundantly in the incompatible interaction-were mostly uncharacterized proteins however, many of their functions could be inferred through homology-matching with pBLAST. Pathogen proteins also included several candidate effector proteins, some novel, and some which have been reported previously. All MS data have been deposited in the PRIDE archive (www.ebi.ac.uk/pride/archive/) under Project PXD012586.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31708941</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (
<i>Puccinia triticina</i>
).</ArticleTitle>
<Pagination>
<MedlinePgn>1291</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01291</ELocationID>
<Abstract>
<AbstractText>Wheat leaf rust caused by the pathogenic fungus,
<i>Puccinia triticina</i>
, is a serious threat to bread wheat and durum production in many areas of the world. This plant-pathogen interaction has been studied extensively at the molecular genetics level however, proteomics data are still relatively scarce. The present study investigated temporal changes in the abundance of the apoplastic fluid proteome of resistant and susceptible wheat leaves infected with
<i>P. triticina</i>
race-1, using a label-free LC-MS-based approach. In general, there was very little difference between inoculated and control apoplastic proteomes in either host, until haustoria had become well established in the susceptible host, although the resistant host responds to pathogen challenge sooner. In the earlier samplings (up to 72 h after inoculation) there were just 46 host proteins with significantly changing abundance, and pathogen proteins were detected only rarely and not reproducibly. This is consistent with the biotrophic lifestyle of
<i>P. triticina</i>
, where the invading pathogen initially causes little tissue damage or host cell death, which occur only later during the infection cycle. The majority of the host proteins with altered abundance up to 72 h post-inoculation were pathogen-response-related, including peroxidases, chitinases, β-1-3-endo-glucanases, and other PR proteins. Five days after inoculation with the susceptible apoplasm it was possible to detect 150
<i>P. triticina</i>
proteins and 117 host proteins which had significantly increased in abundance as well as 33 host proteins which had significantly decreased in abundance. The latter represents potential targets of pathogen effectors and included enzymes which could damage the invader. The pathogen-expressed proteins-seen most abundantly in the incompatible interaction-were mostly uncharacterized proteins however, many of their functions could be inferred through homology-matching with pBLAST. Pathogen proteins also included several candidate effector proteins, some novel, and some which have been reported previously. All MS data have been deposited in the PRIDE archive (www.ebi.ac.uk/pride/archive/) under Project PXD012586.</AbstractText>
<CopyrightInformation>Copyright © 2019 Rampitsch, Huang, Djuric-Cignaovic, Wang and Fernando.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rampitsch</LastName>
<ForeName>Christof</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Mei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Djuric-Cignaovic</LastName>
<ForeName>Slavica</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiben</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernando</LastName>
<ForeName>Ursla</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agrifood Canada, Morden, MB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">apoplastic fluid</Keyword>
<Keyword MajorTopicYN="N">effector proteins</Keyword>
<Keyword MajorTopicYN="N">leaf rust</Keyword>
<Keyword MajorTopicYN="N">proteomics</Keyword>
<Keyword MajorTopicYN="N">yellow rust</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31708941</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01291</ArticleId>
<ArticleId IdType="pmc">PMC6819374</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 20;5:416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Apr;15(7):1307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25546510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Dec;15(9):865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2019 May 3;18(5):2052-2064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30931570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Plant Pathol. 2015 Jan;89:49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25892845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Dec;23(12):1635-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Dec;13(12):1849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Apr;111(4):457-465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Sep 15;80(18):7036-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18686972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1659:73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):800-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):93-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2012 Feb;12(4-5):673-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jun 27;69(15):3511-3514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29947808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Dec;11(12):2301-2319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27809316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011 Dec 22;7:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22192489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;835:603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22183681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Jan;7(1):69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Dec;28:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26343014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Sep;13(9):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27348712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Mar 4;15(3):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26813582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):479-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Mar;11(5):944-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21280219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000026 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000026 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31708941
   |texte=   Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (Puccinia triticina).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31708941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020