Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plants make galls to accommodate foreigners: some are friends, most are foes.

Identifieur interne : 000024 ( Main/Corpus ); précédent : 000023; suivant : 000025

Plants make galls to accommodate foreigners: some are friends, most are foes.

Auteurs : Marion O. Harris ; Andrea Pitzschke

Source :

RBID : pubmed:31774564

Abstract

At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.

DOI: 10.1111/nph.16340
PubMed: 31774564

Links to Exploration step

pubmed:31774564

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plants make galls to accommodate foreigners: some are friends, most are foes.</title>
<author>
<name sortKey="Harris, Marion O" sort="Harris, Marion O" uniqKey="Harris M" first="Marion O" last="Harris">Marion O. Harris</name>
<affiliation>
<nlm:affiliation>Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitzschke, Andrea" sort="Pitzschke, Andrea" uniqKey="Pitzschke A" first="Andrea" last="Pitzschke">Andrea Pitzschke</name>
<affiliation>
<nlm:affiliation>Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31774564</idno>
<idno type="pmid">31774564</idno>
<idno type="doi">10.1111/nph.16340</idno>
<idno type="wicri:Area/Main/Corpus">000024</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plants make galls to accommodate foreigners: some are friends, most are foes.</title>
<author>
<name sortKey="Harris, Marion O" sort="Harris, Marion O" uniqKey="Harris M" first="Marion O" last="Harris">Marion O. Harris</name>
<affiliation>
<nlm:affiliation>Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitzschke, Andrea" sort="Pitzschke, Andrea" uniqKey="Pitzschke A" first="Andrea" last="Pitzschke">Andrea Pitzschke</name>
<affiliation>
<nlm:affiliation>Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31774564</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Plants make galls to accommodate foreigners: some are friends, most are foes.</ArticleTitle>
<Pagination>
<MedlinePgn>1852-1872</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16340</ELocationID>
<Abstract>
<AbstractText>At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Marion O</ForeName>
<Initials>MO</Initials>
<Identifier Source="ORCID">0000-0002-1123-8079</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pitzschke</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-3451-1429</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">developmental plasticity</Keyword>
<Keyword MajorTopicYN="Y">effectors</Keyword>
<Keyword MajorTopicYN="Y">morphogenesis</Keyword>
<Keyword MajorTopicYN="Y">mutualism</Keyword>
<Keyword MajorTopicYN="Y">parasitism</Keyword>
<Keyword MajorTopicYN="Y">plant defense</Keyword>
<Keyword MajorTopicYN="Y">plant susceptibility</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31774564</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16340</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abrahamson WG, Weis AE. 1997. Evolution ecology across three trophic levels-goldenrods, gallmakers, and natural enemies. Princeton, NJ, USA: Princeton University Press.</Citation>
</Reference>
<Reference>
<Citation>Aggarwal R, Subramanyam S, Zhao C, Chen MS, Harris MO, Stuart JJ. 2014. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor). PLoS ONE 9: e100958.</Citation>
</Reference>
<Reference>
<Citation>Agrios GN. 2005. Plant pathology, 5th edn. Burlington, MA, USA: Elsevier Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS. 2015. Cancer across the tree of life: cooperation and cheating in multicellularity. Philosophical Transactions of the Royal Society B 370: 20140219.</Citation>
</Reference>
<Reference>
<Citation>Aguilar J, Zupan J, Cameron TA, Zambryski PC. 2010. Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proceedings of the National Academy of Sciences, USA 107: 3758-3763.</Citation>
</Reference>
<Reference>
<Citation>Bago B, Pfeffer PE, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124: 949-958.</Citation>
</Reference>
<Reference>
<Citation>Beatty PH, Good AG. 2011. Future prospects for cereals that fix nitrogen. Science 333: 416-417.</Citation>
</Reference>
<Reference>
<Citation>Berg RH, Taylor C. 2009. Cell biology of plant nematode parasitism. Berlin, Germany: Springer.</Citation>
</Reference>
<Reference>
<Citation>Berlin A, Samils B, Andersson B. 2017. Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improving understanding of the biology of cereal rust fungi. Fungal Biology and Biotechnology 4: 3.</Citation>
</Reference>
<Reference>
<Citation>Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9: 200-211.</Citation>
</Reference>
<Reference>
<Citation>Boyce GR, Gluck-Thaler E, Slot JC, Stajich JE, Davis WJ, James TY, Cooley JR, Panaccione DG, Eilenbery J, De Fine Licht HH et al. 2019. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying pathogens. Fungal Ecology 41: 147-164.</Citation>
</Reference>
<Reference>
<Citation>Braun AC. 1954. The physiology of plant tumors. Annual Review of Plant Physiology 5: 133-162.</Citation>
</Reference>
<Reference>
<Citation>Braun AC. 1958. A physiological basis for autonomous growth of the crown-gall tumor cell. Proceedings of the National Academy of Sciences, USA 44: 344-349.</Citation>
</Reference>
<Reference>
<Citation>Braun AC. 1978. Plant tumors. Biochimica et Biophysica Acta 516: 167-191.</Citation>
</Reference>
<Reference>
<Citation>Brefort T, Doehlmann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. 2009. Ustilago maydis as a pathogen. Annual Review of Phytopathology 47: 423-445.</Citation>
</Reference>
<Reference>
<Citation>Bronner R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls. Oxford, UK: Oxford University Press, 118-140.</Citation>
</Reference>
<Reference>
<Citation>Bronstein JL. 1994. Conditional outcomes in mutualistic interations. Trends in Ecology and Evolution 9: 214-217.</Citation>
</Reference>
<Reference>
<Citation>Bronstein JL. 2015. The study of mutualism. In: Bronstein JD, ed. Mutualism. Oxford, UK: Oxford University Press, 3-19.</Citation>
</Reference>
<Reference>
<Citation>Bronstein JL, Alarcón R, Geber M. 2006. The evolution of plant-insect mutualisms. New Phytologist 172: 412-428.</Citation>
</Reference>
<Reference>
<Citation>Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V. 2015. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Frontiers in Plant Science 6: 434.</Citation>
</Reference>
<Reference>
<Citation>Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL. 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology 15: e2001793.</Citation>
</Reference>
<Reference>
<Citation>Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN et al. 2016. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences, USA 45: 12856-12861.</Citation>
</Reference>
<Reference>
<Citation>Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN. 2016. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proceedings of the National Academy of Sciences, USA 113: 10204-10209.</Citation>
</Reference>
<Reference>
<Citation>Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S. 2009. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Molecular Plant-Microbe Interactions 22: 849-856.</Citation>
</Reference>
<Reference>
<Citation>Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC. 2010. Laser microdissection of Arabidopsis cells at the powdery mildew infection sites reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences, USA 107: 460-465.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Upadhyaya NA, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R et al. 2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358: 1607-1610.</Citation>
</Reference>
<Reference>
<Citation>Chilton M-D, Drummond MH, Merlo DJ, Sciasky D, Montoya AL, Gordan MP, Nester EW. 1977. Stable incorporation of plasmid DNA into higher plants cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271.</Citation>
</Reference>
<Reference>
<Citation>Chinery M. 2011. Britain's plant galls: a photographic guide. Old Basing, Hampshire, UK: WildGuides.</Citation>
</Reference>
<Reference>
<Citation>Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-14.</Citation>
</Reference>
<Reference>
<Citation>Coles JW. 1958. Nematodes parasitic on sea weeds of the genera Ascophyllum and Fucus. Journal Marine Biology Association UK 37: 145-155.</Citation>
</Reference>
<Reference>
<Citation>Cook JM, Raplus J-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology and Evolution 18: 241-248.</Citation>
</Reference>
<Reference>
<Citation>Crespi B, Worobey M. 2016. Comparative analysis of gall morphology in Australian gall thrips: the evolution of extended phenotypes. Evolution 52: 1686-1696.</Citation>
</Reference>
<Reference>
<Citation>Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J. 1992. Fasciation induction by the phytopathogen Rhodococcus fascians depend upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal 11: 795-804.</Citation>
</Reference>
<Reference>
<Citation>Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: from pathogen recognition to robust defense. Annual Review of Plant Biology 66: 6.1-6.25.</Citation>
</Reference>
<Reference>
<Citation>Damiani I, Balducci-Cresp F, Hopkins J, Balzergue S, Lecomte P, Puppo A, Abad P, Favery B, Herouart D. 2012. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytologist 194: 511-522.</Citation>
</Reference>
<Reference>
<Citation>Davière J-M, Achard P. 2017. Organ communication: cytokinins on the move. Nature Plants 3: 17116.</Citation>
</Reference>
<Reference>
<Citation>Dean R, Van Kan JA, Pretorius ZA, Hammong-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414-430.</Citation>
</Reference>
<Reference>
<Citation>De Bruyne JM, Hofte M, De Vleesschauwer D. 2014. Connecting growth and defense: the emerging roles of brassinostroids and gibberellins in plant innate immunity. Molecular Plant 7: 943-959.</Citation>
</Reference>
<Reference>
<Citation>De Cleene M, De Ley J. 1976. The host range of crown gall. The Botanical Review 42: 389-466.</Citation>
</Reference>
<Reference>
<Citation>Depuydt S, De Veylder L, Holsters M, Vereecke D. 2009. Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. Plant Physiology 149: 1387-1398.</Citation>
</Reference>
<Reference>
<Citation>Dhandapani P, Song J, Novak O, Jameson P. 2017. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Annals of Botany 119: 841-852.</Citation>
</Reference>
<Reference>
<Citation>Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. 2007. Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318: 453-456.</Citation>
</Reference>
<Reference>
<Citation>Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED. 2000. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proceedings of the National Academy of Sciences, USA 97: 6218-23.</Citation>
</Reference>
<Reference>
<Citation>Du Toit A. 2014. Phytoplasma converts plants into zombies. Nature Reviews Microbiology 12: 393.</Citation>
</Reference>
<Reference>
<Citation>Egan SP, Hood GR, Feder JL, Ott JR. 2012. Divergent host-plant use promotes reproductive isolation among cynipid gall wasp populations. Biology Letters 8: 605-608.</Citation>
</Reference>
<Reference>
<Citation>Egan SP, Zhang L, Comerford M, Hood GR. 2018. Botanical parasitism of an insect by a parasitic plant. Current Biology 28: R863-R864.</Citation>
</Reference>
<Reference>
<Citation>Egeblad M, Nakasone ES, Werb Z. 2010. Tumors as organs: complex tissues that interface with the entire organism. Developmental Cell 18: 884-901.</Citation>
</Reference>
<Reference>
<Citation>Erlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586-608.</Citation>
</Reference>
<Reference>
<Citation>Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legué V. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in popular and Arabidopsis through auxin transport and signaling. Plant Physiology 151: 1991-2005.</Citation>
</Reference>
<Reference>
<Citation>Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG. 2015. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiology 167: 1233-1242.</Citation>
</Reference>
<Reference>
<Citation>Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D. 2016. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnology 33: 706-717.</Citation>
</Reference>
<Reference>
<Citation>Francis IM, Vereecke B. 2019. Plant-associated Rhodococcus species, for better and for worse. In: Alvarez HM, ed. Biology of Rhodococcus, microbiology monographs. Berlin, Germany: Springer-Verlag, 359-377.</Citation>
</Reference>
<Reference>
<Citation>Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394-410.</Citation>
</Reference>
<Reference>
<Citation>Gelvin SB. 2010. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annual Review of Phytopathology 48: 45-68.</Citation>
</Reference>
<Reference>
<Citation>Gelvin SB. 2017. Integration of Agrobacterium T-DNA into the plant genome. Annual Review of Genetics 51: 195-217.</Citation>
</Reference>
<Reference>
<Citation>Gilbert GS, Parker IM. 2016. The evolutionary ecology of plant disease: a phylogenetic perspective. Annual Review of Phytopathology 54: 549-578.</Citation>
</Reference>
<Reference>
<Citation>Goethals K, Vereeke D, Jaziri M, Van Montagu M, Holsters M. 2001. Leaf gall formation by Rhodococcus fascians. Annual Review of Phytopathology 39: 27-52.</Citation>
</Reference>
<Reference>
<Citation>Gohlke J, Deeken R. 2014. Plant responses to Agrobacterium tumefaciens and crown gall development. Frontiers in Plant Science 5: 155.</Citation>
</Reference>
<Reference>
<Citation>Gonzalez-Mula A, Lachat J, Mathias L, Naquin D, Lamouche F, Mergaert P, Faure D. 2019. The biotroph Agrobacterium tumefaciens thrives in tumours by exploiting a wide spectrum of metabolites. New Phytologist 222: 455-467.</Citation>
</Reference>
<Reference>
<Citation>Granett J, Walker MA, Kocsis L, Omer AD. 2001. Biology and management of grape phylloxera. Annual Review of Entomology 46: 387-412.</Citation>
</Reference>
<Reference>
<Citation>Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook M, Billualt-Penneteau B, Lauressergues D, Keller J, Imanishi L et al. 2018. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361: eaaat1743.</Citation>
</Reference>
<Reference>
<Citation>Guiguet A, Hamatani A, Amano T, Takeda S, Lopez-Vaamonde C, Giron D, Ohshima I. 2018. Inside the horn of plenty: leaf-mining micromoth manipulates its host plant to obtain unending food provisioning. PLoS ONE 13: e0209485.</Citation>
</Reference>
<Reference>
<Citation>Hardy NB, Cook LG. 2010. Gall-induction in insects: evolutionary dead-end or speciation driver. BMC Evolutionary Biology 10: 257.</Citation>
</Reference>
<Reference>
<Citation>Harland RM. 2018. A new view of embryo development and regeneration. Science 360: 967-968.</Citation>
</Reference>
<Reference>
<Citation>Harris MO, Friesen TL, Xu SS, Chen MS, Giron D, Stuart JJ. 2014. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress. Journal of Experimental Botany 66: 513-531.</Citation>
</Reference>
<Reference>
<Citation>Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annual Review of Entomology 48: 549-577.</Citation>
</Reference>
<Reference>
<Citation>Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey J-L, Pujade-Villar J, Huguet E, Drezen J-M, Shorthouse JD, Stone GN. 2019. Genomic dissection of an extended phenotype: oak galling by a cynipid gall wasp. PLoS Genetics 15: e1008398.</Citation>
</Reference>
<Reference>
<Citation>Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N. 2016. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Current Biology 26: 2770-2778.</Citation>
</Reference>
<Reference>
<Citation>Hedden P. 2003. The genes of the Green Revolution. Trends in Genetics 19: 5-9.</Citation>
</Reference>
<Reference>
<Citation>Hedden P, Sponsel V. 2015. A century of gibberellin research. Journal of Plant Growth and Regulation 34: 740-760.</Citation>
</Reference>
<Reference>
<Citation>Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl AA, Deng M, Denk T, Fitz-Gibbon S et al. 2019. Genomic landscape of the global oak phylogeny. New Phytologist. doi: 10.1111/nph.16162.</Citation>
</Reference>
<Reference>
<Citation>Hirsch AM. 1992. Developmental biology of legume nodulation. New Phytologist 122: 211-237.</Citation>
</Reference>
<Reference>
<Citation>Hogenhout SA, Van der Hoorn RAL, Teruchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions 22: 115-122.</Citation>
</Reference>
<Reference>
<Citation>Howe G, Major IT, Koo AJ. 2018. Modularity in jasmonate signaling for multistress resilience. Annual Review of Plant Biology 69: 387-415.</Citation>
</Reference>
<Reference>
<Citation>Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70: 377-406.</Citation>
</Reference>
<Reference>
<Citation>Jacques MA, Arlat M, Boulanger A, Boureau T, Carrere S, Cesbron S, Chen NW, Cociancich S, Darrasse A, Denance N et al. 2016. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annual Review of Phytopathology 54: 163-187.</Citation>
</Reference>
<Reference>
<Citation>Jayaraman D, Gilroy S, Ané J-M. 2014. Staying in touch: mechanical signals in plant-microbe interactions. Current Opinion in Plant Biology 20: 104-109.</Citation>
</Reference>
<Reference>
<Citation>Jones DG, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Joy J. 2013. Symbiosis catalyses niche expansion and diversification. Proceedings of the Royal Society B: Biological Sciences 280: 20122820.</Citation>
</Reference>
<Reference>
<Citation>Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI, Aguilar JM, Hastings AP, Bernstein SL, Matsunaga T, Astourian M et al. 2019. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574: 409-412.</Citation>
</Reference>
<Reference>
<Citation>Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyñski A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH et al. 2015. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523: 308-312.</Citation>
</Reference>
<Reference>
<Citation>Kereszt A, Kondorosi E. 2011. Unlocking the door to invasion. Science 331: 865-866.</Citation>
</Reference>
<Reference>
<Citation>Kierzkowaski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowaski A-L, Wilson-Sanchez D, Jenke H, Galinha C, Mosca G et al. 2019. A growth-based framework for leaf shape development and diversity. Cell 177: 1405-1418.</Citation>
</Reference>
<Reference>
<Citation>Kozák L, Szilágyi Z, Vágó B, Kakuk A, Tóth L, Molnár I, Pócsi I. 2018. Inactivation of the indole-diterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Applied Microbiology and Biotechnology 102: 3255-3266.</Citation>
</Reference>
<Reference>
<Citation>Kutsukake M, Meng X-Y, Katayama N, Nikoh N, Shibao H, Fukatsu T. 2012. An insect-induced novel plant phenotype for sustaining social life in a closed system. Nature Communications 13: 1187.</Citation>
</Reference>
<Reference>
<Citation>Kutsukake M, Moriyama M, Shigenobu S, Meng X-Y, Nikoh N, Noda C, Kobayashi S, Fukatsu T. 2019. Exaggeration and cooption of innate immunity for social defense. Proceedings of the National Academy of Sciences, USA 116: 8959-8959.</Citation>
</Reference>
<Reference>
<Citation>Kyndt T, Zemene HY, Haeck A, Singh R, De Vlesschauwer D, Denil S, De Meyer T, Höfte M, Demeestere K, Gheysen G. 2017. Below-ground attack by root-knot nematode Meloidogyne graminicola predisposes rice to blast disease. Molecular Plant Microbe Interactions 30: 255-266.</Citation>
</Reference>
<Reference>
<Citation>Labandeira CC, Phillips TL. 1996. A Carboniferous insect gall: insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences, USA 93: 8474.</Citation>
</Reference>
<Reference>
<Citation>Labandeira CC, Phillips TL. 2002. Stem borings and petiole galls from Pennsylvania tree ferns of Illinois, USA: implications for the origin of the borer and gall functional-feeding groups and holometabolous insects. Palaeontographica 264: 1-84.</Citation>
</Reference>
<Reference>
<Citation>Lacroix B, Citovsky V. 2016. Transfer of DNA from Bacteria to Eukaryotes. mBio 7: e00863-16.</Citation>
</Reference>
<Reference>
<Citation>Lacroix B, Citovsky V. 2018. Beyond Agrobacterium-mediated transformation: horizontal gene transfer from bacteria to eukaryotes. Current Topics in Microbiology and Immunology 418: 443-462.</Citation>
</Reference>
<Reference>
<Citation>Lacroix B, Tzfira T, Vainstein A, Citovsky V. 2006. A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends in Genetics 22: 29-37.</Citation>
</Reference>
<Reference>
<Citation>Lamovšek J, Stare BG, Pleško IM, Sirca S, Urek G. 2017. Agrobacterium enhance plant defense against root-knot nematodes on tomato. Phytopathology 107: 681-691.</Citation>
</Reference>
<Reference>
<Citation>Lanfranco L, Fiorelli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist 220: 1031-1046.</Citation>
</Reference>
<Reference>
<Citation>Lapham R, Lee L-Y, Tsugama D, Lee S, Mengiste T, Gelvin SB. 2018. VIP1 and its homologs are not required for Agrobacterium-mediated transformation, but play a role in Botrytis and salt stress responses. Frontiers in Plant Biology 9: 749.</Citation>
</Reference>
<Reference>
<Citation>Lapin D, Van den Ackerveken G. 2013. Susceptibility to plant disease: more than a failure of host immunity. Trends in Plant Science 18: 546-554.</Citation>
</Reference>
<Reference>
<Citation>Larson KC, Whitham TG. 1997. Competition between gall aphids and natural plant sinks: Plant architecture affects resistance to galling. Oecologia 109: 575-582.</Citation>
</Reference>
<Reference>
<Citation>Leach JE, Vera Cruz CM, Bai J, Leung H. 2001. Pathogen fitness penalty as a predictor for durability of disease resistance genes. Annual Review Phytopathology 39: 187-224.</Citation>
</Reference>
<Reference>
<Citation>Lemaux PG. 2008. Genetically engineered plants and foods: a scientist's analysis of the issues (part I). Annual Review of Plant Biology 59: 771-812.</Citation>
</Reference>
<Reference>
<Citation>Lemaux PG. 2009. Genetically engineered plants and foods: a scientist's analysis of the issues (part II). Annual Review of Plant Biology 60: 511-559.</Citation>
</Reference>
<Reference>
<Citation>Lewis LA, McCourt RM. 2004. Green algae and the origin of land plants. American Journal of Botany 91: 1535-1556.</Citation>
</Reference>
<Reference>
<Citation>Liu X, Khajuria C, Li J, Trick HN, Huang L, Gill BS, Reeck GR, Antony G, White FF, Chen MS. 2013. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nature Communications 4: 2070.</Citation>
</Reference>
<Reference>
<Citation>Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Kahmann R. 2015. Fungal effectors and plant susceptibility. Annual Review of Plant Biology 66: 513-545.</Citation>
</Reference>
<Reference>
<Citation>Lorrain C, Gonçalves dos Santos KC, Germain H, Hecker A, Duplessis S. 2019. Advances in understanding obligate biotrophy in rust fungi. New Phytologist 222: 1190-1206.</Citation>
</Reference>
<Reference>
<Citation>McClintock B. 1984. The significance of responses of the genome to challenge. Science 226: 792-801.</Citation>
</Reference>
<Reference>
<Citation>MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology 12: e1001835.</Citation>
</Reference>
<Reference>
<Citation>Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE et al. 2011. Coiled coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9: 187-199.</Citation>
</Reference>
<Reference>
<Citation>Maes T, Vereeke D, Ritsema T, Cornelis K, NgoThi Thu H, Van Montagu M, Holsters M, Goethals K. 2001. The att locus of Rhodococcus fasciens strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Molecular Microbiology 42: 13-28.</Citation>
</Reference>
<Reference>
<Citation>Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 58-63.</Citation>
</Reference>
<Reference>
<Citation>Martin FM. 2008. Orchestrating morphogenesis in mycorrhizal symbioses. New Phytologist 177: 839-841.</Citation>
</Reference>
<Reference>
<Citation>Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse M-A. 2018. Cross-scale integration of mycorrhizal function. New Phytologist 220: 941-946.</Citation>
</Reference>
<Reference>
<Citation>Martin FM, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. 2016. Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology 14: 760-773.</Citation>
</Reference>
<Reference>
<Citation>Martin FM, Uroz S, Barker DG. 2017. Ancestral alliances: plant mutualistic symbiosis with fungi and bacteria. Science 356: eaad4501.</Citation>
</Reference>
<Reference>
<Citation>Martinson EO, Hackett JD, Machado CA, Arnold AE. 2015. Metatranscriptome analysis of fig flowers provides insights into potential mechanisms for mutualism stability and gall induction. PLoS ONE 10: e0130745.</Citation>
</Reference>
<Reference>
<Citation>Mehlhorn H. 2017. Host manipulations by parasites. Heidelberg, Germany: Springer.</Citation>
</Reference>
<Reference>
<Citation>Melnyk CW. 2016. Connecting the plant vasculature to friend or foe. New Phytologist 213: 1611-1617.</Citation>
</Reference>
<Reference>
<Citation>Mestre P, Baulcombe DC. 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18: 491-501.</Citation>
</Reference>
<Reference>
<Citation>Meyer J. 1987. Plant galls and gall inducers. Berlin and Stuttgart, Germany: Gebrüder Borntraeger.</Citation>
</Reference>
<Reference>
<Citation>Meyers BC, Kozik A, Kuang H, Michelmore RW. 2003. Genome-wise analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834.</Citation>
</Reference>
<Reference>
<Citation>Michelmore RW, Christopoulou M, Caldwell KS. 2013. Impacts of resistance gene genetics, function and evolution on a durable future. Annual Review of Phytopathology 51: 291-319.</Citation>
</Reference>
<Reference>
<Citation>Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199: 879-894.</Citation>
</Reference>
<Reference>
<Citation>Miller RM, Reinhardt DR, Jastow JD. 1995. External hyphae production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie. Oecologia 103: 17-23.</Citation>
</Reference>
<Reference>
<Citation>Minelli A. 2018. Plant evolutionary developmental biology - the evolvability of the phenotype. Cambridge, UK: Cambridge University Press.</Citation>
</Reference>
<Reference>
<Citation>Nagel R, Bieber JE, Schmidt-Dannert MG, Nett RS, Peters RJ. 2018. A third class: functional gibberellin biosynthetic operon in beta-proteobacteria. Frontiers in Microbiology 9: 2916.</Citation>
</Reference>
<Reference>
<Citation>Nagel R, Peters RJ. 2017. Investigating the phylogenetic range of gibberellin biosynthesis in bacteria. Molecular Plant -Microbe Interactions 30: 343-349.</Citation>
</Reference>
<Reference>
<Citation>Nagel R, Turrini PCG, Nett RS, Leach JE, Verdier V, Van Sluys MA et al. 2017. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. New Phytologist 214: 1260-1266.</Citation>
</Reference>
<Reference>
<Citation>Nester EW. 2015. Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5: 730.</Citation>
</Reference>
<Reference>
<Citation>Nett RS, Contreras T, Peters RJ. 2017a. Characterization of CYP115 as a gibberellin 3-oxidase indicates that certain rhizobia can produce bioactive gibberellin A4. ACS Chemical Biology 12: 912-917.</Citation>
</Reference>
<Reference>
<Citation>Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles RC, Hedden P, Rojas MC, Peters RJ. 2017b. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology 13: 69-74.</Citation>
</Reference>
<Reference>
<Citation>Novák O, Napier R, Ljung K. 2017. Zooming in on plant hormone analysis: tissue and cell-specific approaches. Annual Review of Plant Biology 68: 323-348.</Citation>
</Reference>
<Reference>
<Citation>Oldroyd GED, Murray JD, Poole PS, Downie JA. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics 45: 119-144.</Citation>
</Reference>
<Reference>
<Citation>Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju SS, Kudrna D, Wing R, Untergasser A et al. 2011. LyseM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331: 909-912.</Citation>
</Reference>
<Reference>
<Citation>Orlovskis Z, Hogenhout SA. 2016. A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Frontiers in Plant Science 7: 885.</Citation>
</Reference>
<Reference>
<Citation>Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nature Reviews Microbiology 6: 763-775.</Citation>
</Reference>
<Reference>
<Citation>Parniske M. 2018. Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. Current Opinion in Plant Biology 44: 164-174.</Citation>
</Reference>
<Reference>
<Citation>Pedigo LP, Rice M. 2009. Entomology and pest management, 6th edn. Upper Saddle River, NJ, USA: Pearson Prentice Hall.</Citation>
</Reference>
<Reference>
<Citation>Pennesi E. 2018. 2018 Breakthrough of the year. [WWW document] URL https://www.sciencemag.org/author/Elisabeth-pennesi [accessed 20 December 2018].</Citation>
</Reference>
<Reference>
<Citation>Perkowski EF, Zulauf KE, Weerakoon D, Hayden JD, Loeger TR, Oreper D, Gomez SM, Sacchettini JC, Braunstein M. 2017. The EXIT strategy: an approach for identifying bacterial proteins exported during host infection. mBio 8: e00333-17.</Citation>
</Reference>
<Reference>
<Citation>Perret X, Staehelin C, Broughton WJ. 2000. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews 64: 180-201.</Citation>
</Reference>
<Reference>
<Citation>Pertry I, Vaclavikova K, Depuydt S, Galuska P, Spichal L, Temmerman W, Stes E, Schmulling T, Kakimoto T, Van Montagu MCE et al. 2009. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proceedings of the National Academy of Sciences, USA 106: 929-934.</Citation>
</Reference>
<Reference>
<Citation>Pfunder M, Roy BA. 2000. Pollinator-mediated interactions between a pathogenic fungus, Uromyces pisi (Pucciniaceae), and its host plant, Euphorbia cyparissias (Euphorbiaceae). American Journal of Botany 87: 48-55.</Citation>
</Reference>
<Reference>
<Citation>Pieterse CJM, Vander Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28: 489-521.</Citation>
</Reference>
<Reference>
<Citation>Pitzschke A. 2013. Agrobacterium infection and plant defense-transformation success hangs by a thread. Frontiers in Plant Science 4: 519.</Citation>
</Reference>
<Reference>
<Citation>Pitzschke A, Hirt H. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO Journal 29: 1021-1032.</Citation>
</Reference>
<Reference>
<Citation>Pitzschke A, Schikora A, Hirt H. 2009. MAPK cascade signaling networks in plant defence. Current Opinion in Plant Biology 12: 421-426.</Citation>
</Reference>
<Reference>
<Citation>Plomian C, Aury J-M, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G et al. 2018. Oak genome reveals facets of long life. Nature Plants 4: 440-452.</Citation>
</Reference>
<Reference>
<Citation>Price PW. 1992. Evolution and ecology of gall-inducing sawflies. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls. Oxford, UK: Oxford University Press, 208-224.</Citation>
</Reference>
<Reference>
<Citation>Radhika V, Ueda N, Tsuboi Y, Kojima M, Kikuchi J, Kudo T, Sakakibara H. 2015. Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiology 169: 1118-1126.</Citation>
</Reference>
<Reference>
<Citation>Rajaonson S, Vandeputte OM, Vereecke D, Kiendrebeogo M, Ralambofetra E, Stévigny C, Duez P, Rabemanantsoa C, Mol A, Diallo B et al. 2011. Virulence quenching with a prenylated isoflavanone renders the Malagasy legume Dalbergia pervillei resistant to Rhodococcus fascians. Environmental Microbiology 13: 1236-1252.</Citation>
</Reference>
<Reference>
<Citation>Raman A, Schaefer CW, Withers TM. 2005. Biology, ecology, and evolution of gall-inducing arthropods. Enfield, NH, USA: Science Publishers Inc.</Citation>
</Reference>
<Reference>
<Citation>Redfern M. 2011. Plant galls. London, UK: HarperCollins Publishers.</Citation>
</Reference>
<Reference>
<Citation>Ried MK, Antolin-Llovera M, Parniske M. 2014. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 3: e03891.</Citation>
</Reference>
<Reference>
<Citation>Robert-Seilaniantz A, Grant M, Jones JD. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49: 317-343.</Citation>
</Reference>
<Reference>
<Citation>Rohfritsch O. 1992. Patterns in gall development. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls. Oxford, UK: Oxford University Press, 6-86.</Citation>
</Reference>
<Reference>
<Citation>Roy BA. 1993. Floral mimicry by a plant pathogen. Nature 362: 56-58.</Citation>
</Reference>
<Reference>
<Citation>Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. 2015. A higher level classification of all living organisms. PLoS ONE 10: e0119248.</Citation>
</Reference>
<Reference>
<Citation>Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M, Van Damme D, Genre A. 2019. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytologist 221: 1036-1048.</Citation>
</Reference>
<Reference>
<Citation>Ryder LS, Talbot NJ. 2015. Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology 26: 8-13.</Citation>
</Reference>
<Reference>
<Citation>Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS et al. 2017. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 7: e35852.</Citation>
</Reference>
<Reference>
<Citation>van Schie CCN, Takken FLW. 2014. Susceptibility genes 101: how to be a good host. Annual Review of Phytopathology 52: 551-581.</Citation>
</Reference>
<Reference>
<Citation>Schreiber KJ, Bentham A, Williams SJ, Kobe B, Staskawicz BJ. 2016. Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLoS Pathogens 12: e1005769.</Citation>
</Reference>
<Reference>
<Citation>Schultz JC, Edger PP, Body MJA, Appel HM. 2019. A galling insect activates plant reproductive programs during gall development. Scientific Reports 9: 1833.</Citation>
</Reference>
<Reference>
<Citation>Sgro GG, Costa TR, Cenens W, Souza DP, Cassago A, Coutinho de Oliveira L, Salinas RK, Portugal RV, Farah CS, Waksman G. 2018. Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nature Microbiology 3: 1429-1440.</Citation>
</Reference>
<Reference>
<Citation>Shi Y, Lee LY, Gelvin SB. 2014. Is VIP1 important for Agrobacterium mediated transformation? The Plant Journal 79: 848-860.</Citation>
</Reference>
<Reference>
<Citation>Shorthouse JD, Rohfritsch O. 1992. Biology of insect-induced galls. Oxford, UK: Oxford University Press.</Citation>
</Reference>
<Reference>
<Citation>Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govendan V. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology 49: 465-481.</Citation>
</Reference>
<Reference>
<Citation>Smith EF, Townsend CO. 1907. A plant tumor of bacterial origin. Science 25: 671-673.</Citation>
</Reference>
<Reference>
<Citation>Snelders NC, Kettle GJ, Rudd JJ, Thomma BPHJ. 2018. Plant pathogen effector proteins as manipulators of host microbiomes? Molecular Plant Pathology 19: 257-259.</Citation>
</Reference>
<Reference>
<Citation>Solaiman MDZ, Saito M. 1997. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytologist 136: 533-538.</Citation>
</Reference>
<Reference>
<Citation>Song J, Bent AF. 2014. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathogens 10: e1004030.</Citation>
</Reference>
<Reference>
<Citation>Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LR, Salinas RK et al. 2015. Bacterial killing via a type IV secretion system. Nature Communications 6: 6453.</Citation>
</Reference>
<Reference>
<Citation>Sperschneider J, Dodds PN, Gardiner DM, Manners JM, Singh KB, Taylor JM. 2015. Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathogens 11: e1004806.</Citation>
</Reference>
<Reference>
<Citation>Spooner B. 1994. Proales werneckii: a gall-causing rotifer. In: Williams MAJ, ed. Plant galls- organisms, interactions, populations. Oxford, UK: Oxford University Press, 99-117.</Citation>
</Reference>
<Reference>
<Citation>Spooner B, Roberts P. 2005. Fungi. London, UK: HarperCollins.</Citation>
</Reference>
<Reference>
<Citation>Stern DL, Foster WA. 1997. Evolution of sociality in aphids: a clone's eye view. In: Choe JC, Crespi BJ, eds. The evolution of social behavior in insects and arachnids. Cambridge, UK: Cambridge University Press, 150-165.</Citation>
</Reference>
<Reference>
<Citation>Stes E, Francis I, Pertry I, Dalzblasz A, Depuydt S, Vereecke D. 2013. The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiology Letters 342: 187-194.</Citation>
</Reference>
<Reference>
<Citation>Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. 2011. A successful bacterial coup d'Etat: how Rhodococcus fascians redirects plant development. Annual Review of Plant Pathology 49: 69-86.</Citation>
</Reference>
<Reference>
<Citation>Stone GN, Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution 18: 512-522.</Citation>
</Reference>
<Reference>
<Citation>Strong DR Jr, Lawton JH, Southwood TRE. 1984. Insects on plants: community patterns and mechanisms. Oxford, UK: Blackwell Science.</Citation>
</Reference>
<Reference>
<Citation>Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist 220: 1012-1030.</Citation>
</Reference>
<Reference>
<Citation>Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. 2011. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology 49: 175-195.</Citation>
</Reference>
<Reference>
<Citation>Sugiyama M. 2018. Partnership for callusing. Nature Plants 4: 69-70.</Citation>
</Reference>
<Reference>
<Citation>Temme K, Zhao D, Voigt CA. 2012. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences, USA 109: 7085-7090.</Citation>
</Reference>
<Reference>
<Citation>Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115-149.</Citation>
</Reference>
<Reference>
<Citation>Thomma BPHJ, Nürnberger T, Joosten MHAJ. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23: 4-15.</Citation>
</Reference>
<Reference>
<Citation>Thordal-Christensen H, Birch PRJ, Spanu PD, Panstruga R. 2018. Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease? Molecular Plant Pathology 19: 781-785.</Citation>
</Reference>
<Reference>
<Citation>Tooker JF, Helms AM. 2014. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of gall-inducing habit. Journal of Chemical Ecology 40: 742-753.</Citation>
</Reference>
<Reference>
<Citation>Toruño TY, Stergiopoulos I, Coaker G. 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology 54: 419-441.</Citation>
</Reference>
<Reference>
<Citation>Van Montagu M, Holsters M, Zambryski P, Hernalsteens JP, Depicker A, De Beuckeleer M, Engler G, Lemmers M, Willmitzer L, Schell J. 1980. The interactions of Agrobacterium Ti-plasmid DNA and plant cells. Proceedings of the Royal Society London B: Biological Sciences 210: 351-365.</Citation>
</Reference>
<Reference>
<Citation>Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28: 489-487.</Citation>
</Reference>
<Reference>
<Citation>Wallingford JB. 2019. The 200-year effort to see the embryo. Science 365: 758-759.</Citation>
</Reference>
<Reference>
<Citation>Wang L, Lacroix B, Guo J, Citovsky V. 2018. The Agrobacterium VirE2 effector interacts with multiple members of the Arabidopsis VIP1 protein family. Molecular Plant Pathology 19: 1172-1183.</Citation>
</Reference>
<Reference>
<Citation>Webster JP. 2007. The impact of Toxoplasma gondii on animal behaviour: playing cat and mouse. Schizophrenia Bulletin 33: 752-756.</Citation>
</Reference>
<Reference>
<Citation>Werner GD, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 2014. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications 10: 4087.</Citation>
</Reference>
<Reference>
<Citation>Westphal E. 1992. Cecidogenesis and resistance mechanisms in mite-induced galls. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls. Oxford, UK: Oxford University Press, 141-156.</Citation>
</Reference>
<Reference>
<Citation>White PR. 1951. Neoplastic growth in plants. The Quarterly Review of Biology 16: 1-162.</Citation>
</Reference>
<Reference>
<Citation>Whitham TG. 1992. Ecology of Pemphigus gall aphids. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect-induced galls. Oxford, UK: Oxford University Press, 225-237.</Citation>
</Reference>
<Reference>
<Citation>Wildermuth MC. 2010. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Current Opinion in Plant Biology 13: 449-458.</Citation>
</Reference>
<Reference>
<Citation>Williams MAJ. 1994. Plant galls - organisms, interactions, populations. Oxford, UK: Oxford University Press.</Citation>
</Reference>
<Reference>
<Citation>Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH. 2014. Biological control of weeds: a world catalog of agents and their target weeds. Morgantown, WV, USA: United States Department of Agriculture, Forest Service.</Citation>
</Reference>
<Reference>
<Citation>Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK et al. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens. Science 294: 2317-2323.</Citation>
</Reference>
<Reference>
<Citation>Wool D. 2004. Galling aphids: specialization, biological complexity, and variation. Annual Review of Entomology 49: 175-192.</Citation>
</Reference>
<Reference>
<Citation>Wu J, Lawit SJ, Weers B, Sun J, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J et al. 2019. Overexpression of zmm28 increases maize grain yield in the field. Proceedings of the National Academy of Sciences, USA 116: 23850-23858.</Citation>
</Reference>
<Reference>
<Citation>Yabuta T, Sumiki Y. 1938. On the crystal of gibberellin, a substance to promote plant growth. Journal of Agricultural Chemistry Society of Japan 14: 1526.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y. 2012. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytologist 196: 586-595.</Citation>
</Reference>
<Reference>
<Citation>Yang S, Tang F, Gao M, Krishnan HB, Zhu H. 2010. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proceedings of the National Academy of Sciences, USA 107: 18735-18740.</Citation>
</Reference>
<Reference>
<Citation>Yang S, Wang Q, Fedorova E, Liu J, Qin Q, Zheng Q, Price PA, Pan H, Wang D, Griffitts JS et al. 2017. Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proceedings of the National Academy of Sciences, USA 114: 6848-6853.</Citation>
</Reference>
<Reference>
<Citation>Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systemic and Evolutionary Microbiology 51: 89-103.</Citation>
</Reference>
<Reference>
<Citation>Zaenen I, Van Larabeke N, Teuchy H, Van Montagu M, Schell J. 1974. Supercoiled circular DNA in crown gall inducing Agrobacerium strains. Journal of Molecular Biology 86: 109-127.</Citation>
</Reference>
<Reference>
<Citation>Zhang Z-Q. 2013. Phylum Arthropoda. Zootaxa 3703: 17-26.</Citation>
</Reference>
<Reference>
<Citation>Zhao C, Navarro Escalante L, Chen H, Benatti TR, Qu J, Chellapilla S, Waterhouse RM, Wheeler D, Andersson MA, Bao R et al. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Current Biology 25: 613-620.</Citation>
</Reference>
<Reference>
<Citation>Zhao C, Shukle R, Navarro-Escalante L, Chen M, Richards S, Stuart JJ. 2016. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family. Journal of Insect Physiology 84: 22-31.</Citation>
</Reference>
<Reference>
<Citation>Zhao J, Wang M, Chen X, Kang Z. 2016. Role of alternate hosts in epidemiology of cereal rusts. Annual Review of Phytopathology 54: 207-228.</Citation>
</Reference>
<Reference>
<Citation>Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. 2016. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, nodule bacterial communities. Proceedings of the National Academy of Sciences, USA 116: 23850-23858.</Citation>
</Reference>
<Reference>
<Citation>Zi J, Mafu S, Peters RJ. 2014. To gibberellins and beyond! Surveying the evolution of (di)terpendoid metabolism. Annual Review of Plant Biology 65: 259-286.</Citation>
</Reference>
<Reference>
<Citation>Zipfel C. 2014. Plant pattern-recognition receptors. Trends in Immunology 35: 345-351.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31774564
   |texte=   Plants make galls to accommodate foreigners: some are friends, most are foes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31774564" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020