Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.

Identifieur interne : 000A75 ( Main/Curation ); précédent : 000A74; suivant : 000A76

T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.

Auteurs : Patrick L. Raber [États-Unis] ; Rosa A. Sierra [États-Unis] ; Paul T. Thevenot [États-Unis] ; Zhang Shuzhong [États-Unis] ; Dorota D. Wyczechowska [États-Unis] ; Takumi Kumai [États-Unis] ; Esteban Celis [États-Unis] ; Paulo C. Rodriguez [États-Unis]

Source :

RBID : pubmed:27007050

Descripteurs français

English descriptors

Abstract

The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ T cells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer.

DOI: 10.18632/oncotarget.8197
PubMed: 27007050
PubMed Central: PMC4951233

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27007050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.</title>
<author>
<name sortKey="Raber, Patrick L" sort="Raber, Patrick L" uniqKey="Raber P" first="Patrick L" last="Raber">Patrick L. Raber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Adaptive Biotechnologies, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Adaptive Biotechnologies, Seattle, WA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sierra, Rosa A" sort="Sierra, Rosa A" uniqKey="Sierra R" first="Rosa A" last="Sierra">Rosa A. Sierra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Thevenot, Paul T" sort="Thevenot, Paul T" uniqKey="Thevenot P" first="Paul T" last="Thevenot">Paul T. Thevenot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Translational Research, Ochsner Medical Center, New Orleans, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Translational Research, Ochsner Medical Center, New Orleans, LA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shuzhong, Zhang" sort="Shuzhong, Zhang" uniqKey="Shuzhong Z" first="Zhang" last="Shuzhong">Zhang Shuzhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wyczechowska, Dorota D" sort="Wyczechowska, Dorota D" uniqKey="Wyczechowska D" first="Dorota D" last="Wyczechowska">Dorota D. Wyczechowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kumai, Takumi" sort="Kumai, Takumi" uniqKey="Kumai T" first="Takumi" last="Kumai">Takumi Kumai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Celis, Esteban" sort="Celis, Esteban" uniqKey="Celis E" first="Esteban" last="Celis">Esteban Celis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Paulo C" sort="Rodriguez, Paulo C" uniqKey="Rodriguez P" first="Paulo C" last="Rodriguez">Paulo C. Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27007050</idno>
<idno type="pmid">27007050</idno>
<idno type="doi">10.18632/oncotarget.8197</idno>
<idno type="pmc">PMC4951233</idno>
<idno type="wicri:Area/Main/Corpus">000A75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A75</idno>
<idno type="wicri:Area/Main/Curation">000A75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.</title>
<author>
<name sortKey="Raber, Patrick L" sort="Raber, Patrick L" uniqKey="Raber P" first="Patrick L" last="Raber">Patrick L. Raber</name>
<affiliation wicri:level="1">
<nlm:affiliation>Adaptive Biotechnologies, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Adaptive Biotechnologies, Seattle, WA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sierra, Rosa A" sort="Sierra, Rosa A" uniqKey="Sierra R" first="Rosa A" last="Sierra">Rosa A. Sierra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Thevenot, Paul T" sort="Thevenot, Paul T" uniqKey="Thevenot P" first="Paul T" last="Thevenot">Paul T. Thevenot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Translational Research, Ochsner Medical Center, New Orleans, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Translational Research, Ochsner Medical Center, New Orleans, LA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shuzhong, Zhang" sort="Shuzhong, Zhang" uniqKey="Shuzhong Z" first="Zhang" last="Shuzhong">Zhang Shuzhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wyczechowska, Dorota D" sort="Wyczechowska, Dorota D" uniqKey="Wyczechowska D" first="Dorota D" last="Wyczechowska">Dorota D. Wyczechowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kumai, Takumi" sort="Kumai, Takumi" uniqKey="Kumai T" first="Takumi" last="Kumai">Takumi Kumai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Celis, Esteban" sort="Celis, Esteban" uniqKey="Celis E" first="Esteban" last="Celis">Esteban Celis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Paulo C" sort="Rodriguez, Paulo C" uniqKey="Rodriguez P" first="Paulo C" last="Rodriguez">Paulo C. Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Georgia Regents University Cancer Center, Augusta, GA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oncotarget</title>
<idno type="eISSN">1949-2553</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carcinoma, Lewis Lung (immunology)</term>
<term>Carcinoma, Lewis Lung (therapy)</term>
<term>Cell Communication (immunology)</term>
<term>Cell Differentiation (immunology)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Female (MeSH)</term>
<term>Immunotherapy, Adoptive (methods)</term>
<term>Lymphocyte Activation (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Myeloid Cells (immunology)</term>
<term>T-Lymphocytes (immunology)</term>
<term>Thymoma (immunology)</term>
<term>Thymoma (therapy)</term>
<term>Thymus Neoplasms (immunology)</term>
<term>Thymus Neoplasms (therapy)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des lymphocytes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Carcinome pulmonaire de Lewis (immunologie)</term>
<term>Carcinome pulmonaire de Lewis (thérapie)</term>
<term>Cellules myéloïdes (immunologie)</term>
<term>Communication cellulaire (immunologie)</term>
<term>Différenciation cellulaire (immunologie)</term>
<term>Femelle (MeSH)</term>
<term>Immunothérapie adoptive (méthodes)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Lymphocytes T (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Thymome (immunologie)</term>
<term>Thymome (thérapie)</term>
<term>Tumeurs du thymus (immunologie)</term>
<term>Tumeurs du thymus (thérapie)</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Carcinome pulmonaire de Lewis</term>
<term>Cellules myéloïdes</term>
<term>Communication cellulaire</term>
<term>Différenciation cellulaire</term>
<term>Lymphocytes T</term>
<term>Thymome</term>
<term>Tumeurs du thymus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Carcinoma, Lewis Lung</term>
<term>Cell Communication</term>
<term>Cell Differentiation</term>
<term>Myeloid Cells</term>
<term>T-Lymphocytes</term>
<term>Thymoma</term>
<term>Thymus Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Immunotherapy, Adoptive</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Immunothérapie adoptive</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Carcinoma, Lewis Lung</term>
<term>Thymoma</term>
<term>Thymus Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="thérapie" xml:lang="fr">
<term>Carcinome pulmonaire de Lewis</term>
<term>Thymome</term>
<term>Tumeurs du thymus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Female</term>
<term>Lymphocyte Activation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Femelle</term>
<term>Lignée cellulaire tumorale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ T cells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27007050</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1949-2553</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Oncotarget</Title>
<ISOAbbreviation>Oncotarget</ISOAbbreviation>
</Journal>
<ArticleTitle>T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.</ArticleTitle>
<Pagination>
<MedlinePgn>17565-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.18632/oncotarget.8197</ELocationID>
<Abstract>
<AbstractText>The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ T cells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raber</LastName>
<ForeName>Patrick L</ForeName>
<Initials>PL</Initials>
<AffiliationInfo>
<Affiliation>Adaptive Biotechnologies, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sierra</LastName>
<ForeName>Rosa A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thevenot</LastName>
<ForeName>Paul T</ForeName>
<Initials>PT</Initials>
<AffiliationInfo>
<Affiliation>Institute of Translational Research, Ochsner Medical Center, New Orleans, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shuzhong</LastName>
<ForeName>Zhang</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wyczechowska</LastName>
<ForeName>Dorota D</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumai</LastName>
<ForeName>Takumi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Celis</LastName>
<ForeName>Esteban</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Paulo C</ForeName>
<Initials>PC</Initials>
<AffiliationInfo>
<Affiliation>Georgia Regents University Cancer Center, Augusta, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA184185</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01CA184185</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Oncotarget</MedlineTA>
<NlmUniqueID>101532965</NlmUniqueID>
<ISSNLinking>1949-2553</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018827" MajorTopicYN="N">Carcinoma, Lewis Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002450" MajorTopicYN="N">Cell Communication</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016219" MajorTopicYN="N">Immunotherapy, Adoptive</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008213" MajorTopicYN="N">Lymphocyte Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022423" MajorTopicYN="N">Myeloid Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013945" MajorTopicYN="N">Thymoma</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013953" MajorTopicYN="N">Thymus Neoplasms</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Immune response</Keyword>
<Keyword MajorTopicYN="N">Immunity</Keyword>
<Keyword MajorTopicYN="N">Immunology and Microbiology Section</Keyword>
<Keyword MajorTopicYN="N">adoptive T cell transfer immunotherapy (ACT)</Keyword>
<Keyword MajorTopicYN="N">central memory T cells (TCM)</Keyword>
<Keyword MajorTopicYN="N">mammalian target of rapamycin (mTOR)</Keyword>
<Keyword MajorTopicYN="N">myeloid-derived suppressor cells (MDSC)</Keyword>
<Keyword MajorTopicYN="N">stem cell memory T cells (TSCM)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27007050</ArticleId>
<ArticleId IdType="pii">8197</ArticleId>
<ArticleId IdType="doi">10.18632/oncotarget.8197</ArticleId>
<ArticleId IdType="pmc">PMC4951233</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Br J Cancer. 2011 Feb 15;104(4):643-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21285988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 11;342(6155):1242454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2014 Apr 15;74(8):2217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24574514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2014 Jun 15;134(12):2853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24259296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Dec 15;165(12):6723-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2013 Oct;13(10 ):739-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2015 Aug 15;75(16):3279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26122844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 15;64(16):5839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Feb 15;69(4):1553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2012;30:39-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2011 Apr 22;34(4):541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2006 May;6(5):383-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2005 Jun;115(6):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15931392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2014 Jan;124(1):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24292708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Mar 22;12(4):269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 Mar;9(3):162-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 15;109(4):1568-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 2;460(7251):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19543266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2000 Dec 1;96(12):3838-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Apr;13(4):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunother. 2003 Jul-Aug;26(4):332-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12843795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Jul 1;191(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23794702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Jan 15;168(2):689-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11777962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Apr 3;348(6230):62-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25838374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2012 Oct;12(10):671-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22996603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2013 Jan 24;121(4):567-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2014 Feb;14(2):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24457417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Jan 1;70(1):68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2014 Feb 15;74(4):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24398473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Sep 18;17(10):1290-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Jul 25;39(1):49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23890063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Invest. 2012;41(6-7):614-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Sep 18;41(3):389-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25238096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2009 Jul;15(7):808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000A75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27007050
   |texte=   T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:27007050" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020