Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plastocyanin: structural and functional analysis.

Identifieur interne : 004B24 ( Main/Exploration ); précédent : 004B23; suivant : 004B25

Plastocyanin: structural and functional analysis.

Auteurs : M R Redinbo ; T O Yeates ; S. Merchant

Source :

RBID : pubmed:8027022

Descripteurs français

English descriptors

Abstract

Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 A resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between the Chlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 A rms deviation in the C alpha positions between the Chlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel beta-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochrome f and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (approximately 4 A) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (approximately 12-15 A) and involves the nearly conserved residue Tyr-83 in the negative patch.

DOI: 10.1007/BF00763219
PubMed: 8027022


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plastocyanin: structural and functional analysis.</title>
<author>
<name sortKey="Redinbo, M R" sort="Redinbo, M R" uniqKey="Redinbo M" first="M R" last="Redinbo">M R Redinbo</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90024.</nlm:affiliation>
<wicri:noCountry code="subField">Los Angeles 90024</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yeates, T O" sort="Yeates, T O" uniqKey="Yeates T" first="T O" last="Yeates">T O Yeates</name>
</author>
<author>
<name sortKey="Merchant, S" sort="Merchant, S" uniqKey="Merchant S" first="S" last="Merchant">S. Merchant</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:8027022</idno>
<idno type="pmid">8027022</idno>
<idno type="doi">10.1007/BF00763219</idno>
<idno type="wicri:Area/Main/Corpus">004B51</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004B51</idno>
<idno type="wicri:Area/Main/Curation">004B51</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004B51</idno>
<idno type="wicri:Area/Main/Exploration">004B51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plastocyanin: structural and functional analysis.</title>
<author>
<name sortKey="Redinbo, M R" sort="Redinbo, M R" uniqKey="Redinbo M" first="M R" last="Redinbo">M R Redinbo</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90024.</nlm:affiliation>
<wicri:noCountry code="subField">Los Angeles 90024</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yeates, T O" sort="Yeates, T O" uniqKey="Yeates T" first="T O" last="Yeates">T O Yeates</name>
</author>
<author>
<name sortKey="Merchant, S" sort="Merchant, S" uniqKey="Merchant S" first="S" last="Merchant">S. Merchant</name>
</author>
</analytic>
<series>
<title level="j">Journal of bioenergetics and biomembranes</title>
<idno type="ISSN">0145-479X</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plastocyanin (chemistry)</term>
<term>Plastocyanin (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Plastocyanine (composition chimique)</term>
<term>Plastocyanine (métabolisme)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Relation structure-activité</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 A resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between the Chlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 A rms deviation in the C alpha positions between the Chlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel beta-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochrome f and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (approximately 4 A) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (approximately 12-15 A) and involves the nearly conserved residue Tyr-83 in the negative patch.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8027022</PMID>
<DateCompleted>
<Year>1994</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0145-479X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1994</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bioenergetics and biomembranes</Title>
<ISOAbbreviation>J Bioenerg Biomembr</ISOAbbreviation>
</Journal>
<ArticleTitle>Plastocyanin: structural and functional analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>49-66</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 A resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between the Chlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 A rms deviation in the C alpha positions between the Chlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel beta-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochrome f and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (approximately 4 A) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (approximately 12-15 A) and involves the nearly conserved residue Tyr-83 in the negative patch.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Redinbo</LastName>
<ForeName>M R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90024.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yeates</LastName>
<ForeName>T O</ForeName>
<Initials>TO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merchant</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM00594</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM07185-18</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bioenerg Biomembr</MedlineTA>
<NlmUniqueID>7701859</NlmUniqueID>
<ISSNLinking>0145-479X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>88</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1994</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8027022</ArticleId>
<ArticleId IdType="doi">10.1007/BF00763219</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1992 Jun 2;31(21):4959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1599920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1989 Jun 23;975(1):158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2736252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 15;266(20):13431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1980 Jun 10;591(1):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7388013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Mar 2;32(8):1965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 1991;42:145-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1793005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Jun 9;31(22):5145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1606137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Aug 28;1102(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1324731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Mar 12;259(5101):1575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8384374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Oct 21;291(2):327-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1657646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 May 31;252(5010):1285-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1992 Dec 1;48 ( Pt 6):790-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1492962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 May 1;205(3):1123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1576995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1977 Mar 8;16(5):886-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Nov 20;192(2):361-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3560221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Dec 10;276(1-2):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1962 Jan;51:32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14454304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Sep 15;169(2):521-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6620385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 Aug 5;202(3):623-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3172230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 Oct 20;203(4):1071-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3210236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1988 Sep 12;237(1-2):218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3049152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1325-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Aug 9;27(16):5863-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3056515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 May;2(5):739-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8495197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Mar;277(2):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2310192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Apr 15;268(11):7832-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8463310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Oct 3;28(20):8039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2605172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1987 Dec 17;894(3):386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3689779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1988 Dec 1;44 ( Pt 6):628-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3271558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Oct 4;27(20):7806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3207712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Sep 20;221(2):533-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1920431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Jun 1;87(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">208838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Dec;10(13):4011-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1756713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1987 Dec 30;170(1-2):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3691523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1990 Nov 26;194(1):109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2174771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1991 Feb;4(3):343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1986 Feb;6(2):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Oct 12;32(40):10560-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8399201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Nov 12;30(45):10904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 May 4;32(17):4539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Jul 20;306(2-3):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Mar 10;259(5):2822-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6698995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1975 Apr 25;250(8):2783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">804481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1983 Dec;94(6):1901-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6368528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Apr;108(4):1397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2647767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Feb 8;1141(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8382079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jun 15;32(23):6073-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8507642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jul 25;265(21):12372-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1975 Sep;149(3):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">812489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Feb 5;211(3):617-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2308169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Jun 27;28(13):5554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2505837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 1992 Sep-Oct;3(5):382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1989 Jan;105(1):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2738049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Oct;15(4):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2129338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Feb 20;229(4):1007-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1984 Aug;96(2):385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6501248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1991 Dec;30(2-3):71-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Feb 27;355(6363):796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1311417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Jul 20;196(2):413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3656452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Feb;14(2):229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 5;267(13):9368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Oct 25;266(30):20146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1939076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Oct 5;221(3):765-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1942029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Jan 5;261(1):234-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3941073</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Merchant, S" sort="Merchant, S" uniqKey="Merchant S" first="S" last="Merchant">S. Merchant</name>
<name sortKey="Redinbo, M R" sort="Redinbo, M R" uniqKey="Redinbo M" first="M R" last="Redinbo">M R Redinbo</name>
<name sortKey="Yeates, T O" sort="Yeates, T O" uniqKey="Yeates T" first="T O" last="Yeates">T O Yeates</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004B24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004B24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8027022
   |texte=   Plastocyanin: structural and functional analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8027022" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020