Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

Identifieur interne : 003824 ( Main/Curation ); précédent : 003823; suivant : 003825

Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

Auteurs : Gabino Ríos [Espagne] ; Miguel A. Naranjo ; Domingo J. Iglesias ; Omar Ruiz-Rivero ; Marion Geraud ; Antonio Usach ; Manuel Tal N

Source :

RBID : pubmed:18691431

Descripteurs français

English descriptors

Abstract

BACKGROUND

Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background.

RESULTS

Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues.

CONCLUSION

In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement.


DOI: 10.1186/1471-2164-9-381
PubMed: 18691431
PubMed Central: PMC2533677

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18691431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.</title>
<author>
<name sortKey="Rios, Gabino" sort="Rios, Gabino" uniqKey="Rios G" first="Gabino" last="Ríos">Gabino Ríos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4,5, 46113 Moncada (Valencia), Spain. rios_gab@gva.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4,5, 46113 Moncada (Valencia)</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Naranjo, Miguel A" sort="Naranjo, Miguel A" uniqKey="Naranjo M" first="Miguel A" last="Naranjo">Miguel A. Naranjo</name>
</author>
<author>
<name sortKey="Iglesias, Domingo J" sort="Iglesias, Domingo J" uniqKey="Iglesias D" first="Domingo J" last="Iglesias">Domingo J. Iglesias</name>
</author>
<author>
<name sortKey="Ruiz Rivero, Omar" sort="Ruiz Rivero, Omar" uniqKey="Ruiz Rivero O" first="Omar" last="Ruiz-Rivero">Omar Ruiz-Rivero</name>
</author>
<author>
<name sortKey="Geraud, Marion" sort="Geraud, Marion" uniqKey="Geraud M" first="Marion" last="Geraud">Marion Geraud</name>
</author>
<author>
<name sortKey="Usach, Antonio" sort="Usach, Antonio" uniqKey="Usach A" first="Antonio" last="Usach">Antonio Usach</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18691431</idno>
<idno type="pmid">18691431</idno>
<idno type="doi">10.1186/1471-2164-9-381</idno>
<idno type="pmc">PMC2533677</idno>
<idno type="wicri:Area/Main/Corpus">003824</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003824</idno>
<idno type="wicri:Area/Main/Curation">003824</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003824</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.</title>
<author>
<name sortKey="Rios, Gabino" sort="Rios, Gabino" uniqKey="Rios G" first="Gabino" last="Ríos">Gabino Ríos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4,5, 46113 Moncada (Valencia), Spain. rios_gab@gva.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4,5, 46113 Moncada (Valencia)</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Naranjo, Miguel A" sort="Naranjo, Miguel A" uniqKey="Naranjo M" first="Miguel A" last="Naranjo">Miguel A. Naranjo</name>
</author>
<author>
<name sortKey="Iglesias, Domingo J" sort="Iglesias, Domingo J" uniqKey="Iglesias D" first="Domingo J" last="Iglesias">Domingo J. Iglesias</name>
</author>
<author>
<name sortKey="Ruiz Rivero, Omar" sort="Ruiz Rivero, Omar" uniqKey="Ruiz Rivero O" first="Omar" last="Ruiz-Rivero">Omar Ruiz-Rivero</name>
</author>
<author>
<name sortKey="Geraud, Marion" sort="Geraud, Marion" uniqKey="Geraud M" first="Marion" last="Geraud">Marion Geraud</name>
</author>
<author>
<name sortKey="Usach, Antonio" sort="Usach, Antonio" uniqKey="Usach A" first="Antonio" last="Usach">Antonio Usach</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Chlorophyll (metabolism)</term>
<term>Chlorophyll A (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Citrus (genetics)</term>
<term>Citrus (metabolism)</term>
<term>Citrus (radiation effects)</term>
<term>Fast Neutrons (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Genome, Plant (radiation effects)</term>
<term>Genomics (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Mutagenesis (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Sequence Deletion (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Chlorophylle A (MeSH)</term>
<term>Chromosomes artificiels de bactérie (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Citrus (effets des radiations)</term>
<term>Citrus (génétique)</term>
<term>Citrus (métabolisme)</term>
<term>Dosage génique (MeSH)</term>
<term>Délétion de séquence (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome végétal (effets des radiations)</term>
<term>Génomique (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Neutrons rapides (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Vitis (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Citrus</term>
<term>Génome végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chromosomes, Artificial, Bacterial</term>
<term>Chromosomes, Plant</term>
<term>Citrus</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Chromosomes de plante</term>
<term>Citrus</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorophylle</term>
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Citrus</term>
<term>Genome, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Chlorophyll A</term>
<term>Chromosome Mapping</term>
<term>Fast Neutrons</term>
<term>Gene Dosage</term>
<term>Genomics</term>
<term>Multigene Family</term>
<term>Mutagenesis</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Sequence Deletion</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Cartographie chromosomique</term>
<term>Chlorophylle A</term>
<term>Dosage génique</term>
<term>Délétion de séquence</term>
<term>Famille multigénique</term>
<term>Génomique</term>
<term>Mutagenèse</term>
<term>Neutrons rapides</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18691431</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.</ArticleTitle>
<Pagination>
<MedlinePgn>381</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-9-381</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ríos</LastName>
<ForeName>Gabino</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera km 4,5, 46113 Moncada (Valencia), Spain. rios_gab@gva.es</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Naranjo</LastName>
<ForeName>Miguel A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Iglesias</LastName>
<ForeName>Domingo J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Rivero</LastName>
<ForeName>Omar</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geraud</LastName>
<ForeName>Marion</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Usach</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Talón</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5712ZB110R</RegistryNumber>
<NameOfSubstance UI="C037184">chlorophyll b</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YF5Q9EJC8Y</RegistryNumber>
<NameOfSubstance UI="D000077194">Chlorophyll A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077194" MajorTopicYN="N">Chlorophyll A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005214" MajorTopicYN="N">Fast Neutrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="Y">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18691431</ArticleId>
<ArticleId IdType="pii">1471-2164-9-381</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-9-381</ArticleId>
<ArticleId IdType="pmc">PMC2533677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1998 Oct;20(2):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9771718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Oct;10(4):755-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):800-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Chromosomes Cancer. 1997 Dec;20(4):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9408757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17254327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Dec;278(6):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17665215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2002;3(2):158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Mar;87(5):1889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2408039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):155-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16283928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Genet. 1998;23(3):215-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9842716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4114-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15563614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):R80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Feb;57(3):375-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15830128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Tech. 2005 Jun;16(2):104-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16030317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Feb;41(3):412-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1370-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17496113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(11):3455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Mar;4(3):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1354004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Feb 15;60(4):799-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1709-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jan;51(342):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Dec 12;1541(1-2):102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11750666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Nov 7;268(1482):2211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11674868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Mar 3;16(5):935-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9118955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(3):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Jun 28;54(13):4888-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jun;69(6):1376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Oct 30;258(5083):818-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1359641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Apr;51(6):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jul;276(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Sep;23(1):41-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10471496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Jun;9(3):234-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003824 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003824 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18691431
   |texte=   Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:18691431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020