Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.

Identifieur interne : 004829 ( Main/Corpus ); précédent : 004828; suivant : 004830

Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.

Auteurs : R. Zhong ; W H Morrison ; D S Himmelsbach ; F L Poole ; Z H Ye

Source :

RBID : pubmed:11027707

English descriptors

Abstract

Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.

DOI: 10.1104/pp.124.2.563
PubMed: 11027707
PubMed Central: PMC59163

Links to Exploration step

pubmed:11027707

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.</title>
<author>
<name sortKey="Zhong, R" sort="Zhong, R" uniqKey="Zhong R" first="R" last="Zhong">R. Zhong</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of Georgia, Athens, Georgia 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrison, W H" sort="Morrison, W H" uniqKey="Morrison W" first="W H" last="Morrison">W H Morrison</name>
</author>
<author>
<name sortKey="Himmelsbach, D S" sort="Himmelsbach, D S" uniqKey="Himmelsbach D" first="D S" last="Himmelsbach">D S Himmelsbach</name>
</author>
<author>
<name sortKey="Poole, F L" sort="Poole, F L" uniqKey="Poole F" first="F L" last="Poole">F L Poole</name>
</author>
<author>
<name sortKey="Ye, Z H" sort="Ye, Z H" uniqKey="Ye Z" first="Z H" last="Ye">Z H Ye</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11027707</idno>
<idno type="pmid">11027707</idno>
<idno type="pmc">PMC59163</idno>
<idno type="doi">10.1104/pp.124.2.563</idno>
<idno type="wicri:Area/Main/Corpus">004829</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004829</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.</title>
<author>
<name sortKey="Zhong, R" sort="Zhong, R" uniqKey="Zhong R" first="R" last="Zhong">R. Zhong</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of Georgia, Athens, Georgia 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrison, W H" sort="Morrison, W H" uniqKey="Morrison W" first="W H" last="Morrison">W H Morrison</name>
</author>
<author>
<name sortKey="Himmelsbach, D S" sort="Himmelsbach, D S" uniqKey="Himmelsbach D" first="D S" last="Himmelsbach">D S Himmelsbach</name>
</author>
<author>
<name sortKey="Poole, F L" sort="Poole, F L" uniqKey="Poole F" first="F L" last="Poole">F L Poole</name>
</author>
<author>
<name sortKey="Ye, Z H" sort="Ye, Z H" uniqKey="Ye Z" first="Z H" last="Ye">Z H Ye</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Cell Wall (chemistry)</term>
<term>DNA Primers (genetics)</term>
<term>Lignin (analysis)</term>
<term>Lignin (biosynthesis)</term>
<term>Methyltransferases (genetics)</term>
<term>Methyltransferases (metabolism)</term>
<term>Plant Stems (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>Tissue Distribution (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
<term>Trees (metabolism)</term>
<term>Wood (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Methyltransferases</term>
<term>Plant Stems</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Plants, Genetically Modified</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Tissue Distribution</term>
<term>Wood</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11027707</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>01</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>124</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2000</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.</ArticleTitle>
<Pagination>
<MedlinePgn>563-78</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Georgia, Athens, Georgia 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrison</LastName>
<ForeName>W H</ForeName>
<Initials>WH</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Himmelsbach</LastName>
<ForeName>D S</ForeName>
<Initials>DS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poole</LastName>
<ForeName>F L</ForeName>
<Initials>FL</Initials>
<Suffix>2nd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Z H</ForeName>
<Initials>ZH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.104</RegistryNumber>
<NameOfSubstance UI="C059825">caffeoyl-CoA O-methyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11027707</ArticleId>
<ArticleId IdType="pmc">PMC59163</ArticleId>
<ArticleId IdType="doi">10.1104/pp.124.2.563</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Feb;27(4):651-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7727744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10(12):2033-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7610157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10045-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):135-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1479-1490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 11;277(5323):235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Feb;39(3):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 1999;209(1-2):46-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Sep 15;266(26):17416-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1894629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):871-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jan;110(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5461-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jan;95(1):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997 Mar;201(3):311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jul;8(7):1899-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2792072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1989 Jun;271(2):488-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2499260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Oct;37(7):957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8979396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Feb;84(3):615-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3468501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Nov 1;38(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9747797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Feb;36(3):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Oct;6(10):1427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7994176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:585-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004829 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 004829 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:11027707
   |texte=   Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:11027707" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020