Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).

Identifieur interne : 002591 ( Main/Corpus ); précédent : 002590; suivant : 002592

Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).

Auteurs : Swati Puranik ; Pranav Pankaj Sahu ; Sambhu Nath Mandal ; Venkata Suresh B ; Swarup Kumar Parida ; Manoj Prasad

Source :

RBID : pubmed:23691254

English descriptors

Abstract

The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.

DOI: 10.1371/journal.pone.0064594
PubMed: 23691254
PubMed Central: PMC3654982

Links to Exploration step

pubmed:23691254

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).</title>
<author>
<name sortKey="Puranik, Swati" sort="Puranik, Swati" uniqKey="Puranik S" first="Swati" last="Puranik">Swati Puranik</name>
<affiliation>
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Pranav Pankaj" sort="Sahu, Pranav Pankaj" uniqKey="Sahu P" first="Pranav Pankaj" last="Sahu">Pranav Pankaj Sahu</name>
</author>
<author>
<name sortKey="Mandal, Sambhu Nath" sort="Mandal, Sambhu Nath" uniqKey="Mandal S" first="Sambhu Nath" last="Mandal">Sambhu Nath Mandal</name>
</author>
<author>
<name sortKey="B, Venkata Suresh" sort="B, Venkata Suresh" uniqKey="B V" first="Venkata Suresh" last="B">Venkata Suresh B</name>
</author>
<author>
<name sortKey="Parida, Swarup Kumar" sort="Parida, Swarup Kumar" uniqKey="Parida S" first="Swarup Kumar" last="Parida">Swarup Kumar Parida</name>
</author>
<author>
<name sortKey="Prasad, Manoj" sort="Prasad, Manoj" uniqKey="Prasad M" first="Manoj" last="Prasad">Manoj Prasad</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23691254</idno>
<idno type="pmid">23691254</idno>
<idno type="doi">10.1371/journal.pone.0064594</idno>
<idno type="pmc">PMC3654982</idno>
<idno type="wicri:Area/Main/Corpus">002591</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002591</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).</title>
<author>
<name sortKey="Puranik, Swati" sort="Puranik, Swati" uniqKey="Puranik S" first="Swati" last="Puranik">Swati Puranik</name>
<affiliation>
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Pranav Pankaj" sort="Sahu, Pranav Pankaj" uniqKey="Sahu P" first="Pranav Pankaj" last="Sahu">Pranav Pankaj Sahu</name>
</author>
<author>
<name sortKey="Mandal, Sambhu Nath" sort="Mandal, Sambhu Nath" uniqKey="Mandal S" first="Sambhu Nath" last="Mandal">Sambhu Nath Mandal</name>
</author>
<author>
<name sortKey="B, Venkata Suresh" sort="B, Venkata Suresh" uniqKey="B V" first="Venkata Suresh" last="B">Venkata Suresh B</name>
</author>
<author>
<name sortKey="Parida, Swarup Kumar" sort="Parida, Swarup Kumar" uniqKey="Parida S" first="Swarup Kumar" last="Parida">Swarup Kumar Parida</name>
</author>
<author>
<name sortKey="Prasad, Manoj" sort="Prasad, Manoj" uniqKey="Prasad M" first="Manoj" last="Prasad">Manoj Prasad</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Panicum (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Panicum</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Chromosomes, Plant</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23691254</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).</ArticleTitle>
<Pagination>
<MedlinePgn>e64594</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0064594</ELocationID>
<Abstract>
<AbstractText>The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Puranik</LastName>
<ForeName>Swati</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahu</LastName>
<ForeName>Pranav Pankaj</ForeName>
<Initials>PP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mandal</LastName>
<ForeName>Sambhu Nath</ForeName>
<Initials>SN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>B</LastName>
<ForeName>Venkata Suresh</ForeName>
<Initials>VS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parida</LastName>
<ForeName>Swarup Kumar</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prasad</LastName>
<ForeName>Manoj</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23691254</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0064594</ArticleId>
<ArticleId IdType="pii">PONE-D-12-40186</ArticleId>
<ArticleId IdType="pmc">PMC3654982</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biotechnol. 2008 Nov;40(3):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18592419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Dec 1;14(23):3024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):486-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jun 30;345(2):646-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jan;63(2):289-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2008 Mar;4(3):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):530-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2004 Oct;272(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Aug;8(3):277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Dec;280(6):547-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18813954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(6):1068-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3132-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(19):9720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 15;10:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2010 Jan;95(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Mar;39(4):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Aug;18(4):263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2500-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W445-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 May 1;167(7):571-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Sep;10(7):792-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22551450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Oct 1;465(1-2):30-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(5):745-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2011 Oct;49(2):138-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21312005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(395):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):280-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2089-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 May;67(1-2):169-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(6):903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 01;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35418-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Jan;11(1):101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Oct;6(10):1588-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2481-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Sep;147(1):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9286688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17619150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Sep 1;444(1-2):10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2155-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Jul;4(4):697-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21459832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 Oct;33(10):2073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21660574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1995 Dec;11(6):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(2):302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 9;283(19):13407-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18308732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Apr;5(4):428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2008 Dec;15(6):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):97-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):538-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 May 13;30(6):549-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 May 13;30(6):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 May 15;163(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Feb 15;168(3):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>GM Crops. 2010 Jan-Feb;1(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21912210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2003 Dec 31;10(6):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15029955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2008 Sep;67(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18696028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Feb;8(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Mar;5(3):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15083810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Feb;40(2):1937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1035-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Feb 09;426(2):183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1467-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):77-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2011 Jan;2(1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21337010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Oct 10;13:544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23050870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 14;282(50):36292-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jan;32(1):61-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983198</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002591 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002591 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23691254
   |texte=   Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23691254" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020