Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.

Identifieur interne : 000B96 ( Main/Corpus ); précédent : 000B95; suivant : 000B97

Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.

Auteurs : Renaud Rincent ; Jean-Paul Charpentier ; Patricia Faivre-Rampant ; Etienne Paux ; Jacques Le Gouis ; Catherine Bastien ; Vincent Segura

Source :

RBID : pubmed:30373914

English descriptors

Abstract

Genomic selection - the prediction of breeding values using DNA polymorphisms - is a disruptive method that has widely been adopted by animal and plant breeders to increase productivity. It was recently shown that other sources of molecular variations such as those resulting from transcripts or metabolites could be used to accurately predict complex traits. These endophenotypes have the advantage of capturing the expressed genotypes and consequently the complex regulatory networks that occur in the different layers between the genome and the phenotype. However, obtaining such omics data at very large scales, such as those typically experienced in breeding, remains challenging. As an alternative, we proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-destructive tool to indirectly capture endophenotypic variants and compute relationship matrices for predicting complex traits, and coined this new approach "phenomic selection" (PS). We tested PS on two species of economic interest (Triticum aestivum L. and Populus nigra L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could reach predictions as accurate as with molecular markers, for developmental, tolerance and productivity traits, even in environments radically different from the one in which NIRS were collected. Our work constitutes a proof of concept and provides new perspectives for the breeding community, as PS is theoretically applicable to any organism at low cost and does not require any molecular information.

DOI: 10.1534/g3.118.200760
PubMed: 30373914
PubMed Central: PMC6288839

Links to Exploration step

pubmed:30373914

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.</title>
<author>
<name sortKey="Rincent, Renaud" sort="Rincent, Renaud" uniqKey="Rincent R" first="Renaud" last="Rincent">Renaud Rincent</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charpentier, Jean Paul" sort="Charpentier, Jean Paul" uniqKey="Charpentier J" first="Jean-Paul" last="Charpentier">Jean-Paul Charpentier</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>GenoBois analytical platform, INRA, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faivre Rampant, Patricia" sort="Faivre Rampant, Patricia" uniqKey="Faivre Rampant P" first="Patricia" last="Faivre-Rampant">Patricia Faivre-Rampant</name>
<affiliation>
<nlm:affiliation>EPGV, INRA, CEA-IG/CNG, 91057 Evry, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paux, Etienne" sort="Paux, Etienne" uniqKey="Paux E" first="Etienne" last="Paux">Etienne Paux</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Le Gouis, Jacques" sort="Le Gouis, Jacques" uniqKey="Le Gouis J" first="Jacques" last="Le Gouis">Jacques Le Gouis</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France vincent.segura@inra.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30373914</idno>
<idno type="pmid">30373914</idno>
<idno type="doi">10.1534/g3.118.200760</idno>
<idno type="pmc">PMC6288839</idno>
<idno type="wicri:Area/Main/Corpus">000B96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.</title>
<author>
<name sortKey="Rincent, Renaud" sort="Rincent, Renaud" uniqKey="Rincent R" first="Renaud" last="Rincent">Renaud Rincent</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charpentier, Jean Paul" sort="Charpentier, Jean Paul" uniqKey="Charpentier J" first="Jean-Paul" last="Charpentier">Jean-Paul Charpentier</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>GenoBois analytical platform, INRA, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Faivre Rampant, Patricia" sort="Faivre Rampant, Patricia" uniqKey="Faivre Rampant P" first="Patricia" last="Faivre-Rampant">Patricia Faivre-Rampant</name>
<affiliation>
<nlm:affiliation>EPGV, INRA, CEA-IG/CNG, 91057 Evry, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paux, Etienne" sort="Paux, Etienne" uniqKey="Paux E" first="Etienne" last="Paux">Etienne Paux</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Le Gouis, Jacques" sort="Le Gouis, Jacques" uniqKey="Le Gouis J" first="Jacques" last="Le Gouis">Jacques Le Gouis</name>
<affiliation>
<nlm:affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Segura, Vincent" sort="Segura, Vincent" uniqKey="Segura V" first="Vincent" last="Segura">Vincent Segura</name>
<affiliation>
<nlm:affiliation>BioForA, INRA, ONF, 45075 Orléans, France vincent.segura@inra.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genotype (MeSH)</term>
<term>Plant Breeding (MeSH)</term>
<term>Populus (genetics)</term>
<term>Proof of Concept Study (MeSH)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Plant Breeding</term>
<term>Proof of Concept Study</term>
<term>Quantitative Trait, Heritable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomic selection - the prediction of breeding values using DNA polymorphisms - is a disruptive method that has widely been adopted by animal and plant breeders to increase productivity. It was recently shown that other sources of molecular variations such as those resulting from transcripts or metabolites could be used to accurately predict complex traits. These endophenotypes have the advantage of capturing the expressed genotypes and consequently the complex regulatory networks that occur in the different layers between the genome and the phenotype. However, obtaining such omics data at very large scales, such as those typically experienced in breeding, remains challenging. As an alternative, we proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-destructive tool to indirectly capture endophenotypic variants and compute relationship matrices for predicting complex traits, and coined this new approach "phenomic selection" (PS). We tested PS on two species of economic interest (
<i>Triticum aestivum</i>
L. and
<i>Populus nigra</i>
L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could reach predictions as accurate as with molecular markers, for developmental, tolerance and productivity traits, even in environments radically different from the one in which NIRS were collected. Our work constitutes a proof of concept and provides new perspectives for the breeding community, as PS is theoretically applicable to any organism at low cost and does not require any molecular information.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30373914</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>3961-3972</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.118.200760</ELocationID>
<Abstract>
<AbstractText>Genomic selection - the prediction of breeding values using DNA polymorphisms - is a disruptive method that has widely been adopted by animal and plant breeders to increase productivity. It was recently shown that other sources of molecular variations such as those resulting from transcripts or metabolites could be used to accurately predict complex traits. These endophenotypes have the advantage of capturing the expressed genotypes and consequently the complex regulatory networks that occur in the different layers between the genome and the phenotype. However, obtaining such omics data at very large scales, such as those typically experienced in breeding, remains challenging. As an alternative, we proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-destructive tool to indirectly capture endophenotypic variants and compute relationship matrices for predicting complex traits, and coined this new approach "phenomic selection" (PS). We tested PS on two species of economic interest (
<i>Triticum aestivum</i>
L. and
<i>Populus nigra</i>
L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could reach predictions as accurate as with molecular markers, for developmental, tolerance and productivity traits, even in environments radically different from the one in which NIRS were collected. Our work constitutes a proof of concept and provides new perspectives for the breeding community, as PS is theoretically applicable to any organism at low cost and does not require any molecular information.</AbstractText>
<CopyrightInformation>Copyright © 2018 Rincent et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rincent</LastName>
<ForeName>Renaud</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0003-0885-0969</Identifier>
<AffiliationInfo>
<Affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charpentier</LastName>
<ForeName>Jean-Paul</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">0000-0002-6029-0498</Identifier>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>GenoBois analytical platform, INRA, 45075 Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faivre-Rampant</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>EPGV, INRA, CEA-IG/CNG, 91057 Evry, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paux</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-3094-7129</Identifier>
<AffiliationInfo>
<Affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Gouis</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-5726-4902</Identifier>
<AffiliationInfo>
<Affiliation>GDEC, INRA, UCA, 63000 Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bastien</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">000-0002-9391-6637</Identifier>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, 45075 Orléans, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Segura</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0003-1860-2256</Identifier>
<AffiliationInfo>
<Affiliation>BioForA, INRA, ONF, 45075 Orléans, France vincent.segura@inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.25387/g3.7243256</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="Y">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="Y">Plant Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075082" MajorTopicYN="N">Proof of Concept Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="Y">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">GenPred</Keyword>
<Keyword MajorTopicYN="Y">Genomic Prediction</Keyword>
<Keyword MajorTopicYN="Y">Near InfraRed Spectroscopy (NIRS)</Keyword>
<Keyword MajorTopicYN="Y">Poplar</Keyword>
<Keyword MajorTopicYN="Y">Shared Data Resources</Keyword>
<Keyword MajorTopicYN="Y">Wheat</Keyword>
<Keyword MajorTopicYN="Y">breeding</Keyword>
<Keyword MajorTopicYN="Y">endophenotypes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30373914</ArticleId>
<ArticleId IdType="pii">g3.118.200760</ArticleId>
<ArticleId IdType="doi">10.1534/g3.118.200760</ArticleId>
<ArticleId IdType="pmc">PMC6288839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(8):1319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Dec;177(4):2389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2009 Jun;136(2):245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2008 Nov;91(11):4414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18946147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Feb;102(2):113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res (Camb). 2009 Feb;91(1):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 May;182(1):375-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 May;182(1):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Aug;29(8):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Aug;10(8):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2009 Sep;92(9):4656-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Apr;42(4):348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Sel Evol. 2011 Jan 05;43:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21208445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2012 Mar;124(5):825-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jan 15;44(2):217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 May;54(5):312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22420640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):327-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Oct-Dec;6(4):284-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Sep;44(9):1066-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Spectrosc. 2013 Nov;67(11):1215-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24160873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1988 Dec;76(6):850-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 07;9(1):e85435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 17;15:478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24935670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Anim Biosci. 2013 Jan;1:221-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2015 Feb 26;16:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Aug;35(8):850-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26224105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Jan 05;17:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26732811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2016 Jul;16(4):1023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26929265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Jul 07;6(7):1819-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27172218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 06;11(6):e0156744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Oct;88(2):219-227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27311694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2016 Dec;129(12):2413-2427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27586153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Oct 03;2:16150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27694945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolomics. 2016;12(10):158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27729832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Sep;116(3):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Sep;130(9):1927-1939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28647896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Nov 27;8:2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29230229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jan 2;13(1):e0186329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29293495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2018 Apr;208(4):1373-1385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29363551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 May 21;19(1):371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29783940</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30373914
   |texte=   Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30373914" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020