Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa.

Identifieur interne : 000501 ( Main/Corpus ); précédent : 000500; suivant : 000502

Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa.

Auteurs : Tao Su ; Mei Han ; Jie Min ; Huaiye Zhou ; Qi Zhang ; Jingyi Zhao ; Yanming Fang

Source :

RBID : pubmed:31969894

Abstract

In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.

DOI: 10.3389/fpls.2019.01654
PubMed: 31969894
PubMed Central: PMC6960229

Links to Exploration step

pubmed:31969894

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in
<i>Populus trichocarpa</i>
.</title>
<author>
<name sortKey="Su, Tao" sort="Su, Tao" uniqKey="Su T" first="Tao" last="Su">Tao Su</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Mei" sort="Han, Mei" uniqKey="Han M" first="Mei" last="Han">Mei Han</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Min, Jie" sort="Min, Jie" uniqKey="Min J" first="Jie" last="Min">Jie Min</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Huaiye" sort="Zhou, Huaiye" uniqKey="Zhou H" first="Huaiye" last="Zhou">Huaiye Zhou</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation>
<nlm:affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jingyi" sort="Zhao, Jingyi" uniqKey="Zhao J" first="Jingyi" last="Zhao">Jingyi Zhao</name>
<affiliation>
<nlm:affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yanming" sort="Fang, Yanming" uniqKey="Fang Y" first="Yanming" last="Fang">Yanming Fang</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31969894</idno>
<idno type="pmid">31969894</idno>
<idno type="doi">10.3389/fpls.2019.01654</idno>
<idno type="pmc">PMC6960229</idno>
<idno type="wicri:Area/Main/Corpus">000501</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000501</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in
<i>Populus trichocarpa</i>
.</title>
<author>
<name sortKey="Su, Tao" sort="Su, Tao" uniqKey="Su T" first="Tao" last="Su">Tao Su</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Mei" sort="Han, Mei" uniqKey="Han M" first="Mei" last="Han">Mei Han</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Min, Jie" sort="Min, Jie" uniqKey="Min J" first="Jie" last="Min">Jie Min</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Huaiye" sort="Zhou, Huaiye" uniqKey="Zhou H" first="Huaiye" last="Zhou">Huaiye Zhou</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qi" sort="Zhang, Qi" uniqKey="Zhang Q" first="Qi" last="Zhang">Qi Zhang</name>
<affiliation>
<nlm:affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jingyi" sort="Zhao, Jingyi" uniqKey="Zhao J" first="Jingyi" last="Zhao">Jingyi Zhao</name>
<affiliation>
<nlm:affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yanming" sort="Fang, Yanming" uniqKey="Fang Y" first="Yanming" last="Fang">Yanming Fang</name>
<affiliation>
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (
<i>Populus trichocarpa</i>
Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies,
<i>cis</i>
-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors
<i>PtC/VIF1</i>
and
<i>2</i>
, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence.
<i>In silico</i>
prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization
<i>via</i>
the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31969894</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in
<i>Populus trichocarpa</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1654</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01654</ELocationID>
<Abstract>
<AbstractText>In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (
<i>Populus trichocarpa</i>
Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies,
<i>cis</i>
-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors
<i>PtC/VIF1</i>
and
<i>2</i>
, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence.
<i>In silico</i>
prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization
<i>via</i>
the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.</AbstractText>
<CopyrightInformation>Copyright © 2020 Su, Han, Min, Zhou, Zhang, Zhao and Fang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Mei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Min</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Huaiye</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jingyi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Forest, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Yanming</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">apoplast</Keyword>
<Keyword MajorTopicYN="N">defense response</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">invertase inhibitor</Keyword>
<Keyword MajorTopicYN="N">pathogen</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">sucrose</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31969894</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01654</ArticleId>
<ArticleId IdType="pmc">PMC6960229</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2009 Jul;21(7):2072-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):777-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22864582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2018 Nov;285(21):4082-4098</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30216682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Nov 9;17(1):195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29121866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 May;206(3):1013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25628228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Jul;17(7):1394-1407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30578709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 22;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2969-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18641398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Sep 25;12(9):e0185286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28945799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):709-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2008 Nov-Dec;90(11-12):1611-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 20;7:1899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20736383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 21;20(17):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31438536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Sep;215(4):1548-1561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28744865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Nov;40(11):1370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 14;285(20):15399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Jan;90(1-2):137-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jan 1;68(3):469-482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28204559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Apr;12(3):247-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21355997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jul;17(7):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Feb 12;1696(2):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20858733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22734927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Jul;17(7):708-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10404166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Oct 11;18(1):228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30309330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):307-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2016 Dec;31(6):1381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26899912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Aug 14;19(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30110937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3849-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Feb;23(2):163-177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29183781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(3):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3519-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21393382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jan 30;9:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29441087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Sep;22(9):740-743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28779901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Feb;15(2):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24118770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1037-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Aug 27;573(1-3):105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15327983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 1;7(1):2638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28572673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Mar;11(3):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9107040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Dec;11(9):1080-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23926950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1596-1611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27694342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:675-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2018 Jan 17;11(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29344835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Oct;276(20):5788-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jun;29(6):1061-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Jun;11(5):640-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28032636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Jun;94(6):956-974</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jul;150(3):1204-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:33-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):926-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):260-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20207708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 23;5:293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 04;20(15):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31382684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Oct;15(8):858-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):709-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26079224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Feb;8(2):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jan;223(2):159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 01;8(5):e62467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 04;4:177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Aug 1;5:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30083354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2994-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000501 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000501 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31969894
   |texte=   Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31969894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020