Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.

Identifieur interne : 001A25 ( Main/Exploration ); précédent : 001A24; suivant : 001A26

The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.

Auteurs : Christoph Böttcher [Allemagne] ; Lore Westphal ; Constanze Schmotz ; Elke Prade ; Dierk Scheel ; Erich Glawischnig

Source :

RBID : pubmed:19567706

Descripteurs français

English descriptors

Abstract

Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, gamma-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate-treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.

DOI: 10.1105/tpc.109.066670
PubMed: 19567706
PubMed Central: PMC2714930


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.</title>
<author>
<name sortKey="Bottcher, Christoph" sort="Bottcher, Christoph" uniqKey="Bottcher C" first="Christoph" last="Böttcher">Christoph Böttcher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale</wicri:regionArea>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Westphal, Lore" sort="Westphal, Lore" uniqKey="Westphal L" first="Lore" last="Westphal">Lore Westphal</name>
</author>
<author>
<name sortKey="Schmotz, Constanze" sort="Schmotz, Constanze" uniqKey="Schmotz C" first="Constanze" last="Schmotz">Constanze Schmotz</name>
</author>
<author>
<name sortKey="Prade, Elke" sort="Prade, Elke" uniqKey="Prade E" first="Elke" last="Prade">Elke Prade</name>
</author>
<author>
<name sortKey="Scheel, Dierk" sort="Scheel, Dierk" uniqKey="Scheel D" first="Dierk" last="Scheel">Dierk Scheel</name>
</author>
<author>
<name sortKey="Glawischnig, Erich" sort="Glawischnig, Erich" uniqKey="Glawischnig E" first="Erich" last="Glawischnig">Erich Glawischnig</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19567706</idno>
<idno type="pmid">19567706</idno>
<idno type="doi">10.1105/tpc.109.066670</idno>
<idno type="pmc">PMC2714930</idno>
<idno type="wicri:Area/Main/Corpus">001A67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A67</idno>
<idno type="wicri:Area/Main/Curation">001A67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A67</idno>
<idno type="wicri:Area/Main/Exploration">001A67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.</title>
<author>
<name sortKey="Bottcher, Christoph" sort="Bottcher, Christoph" uniqKey="Bottcher C" first="Christoph" last="Böttcher">Christoph Böttcher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale</wicri:regionArea>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
<wicri:noRegion>06120 Halle/Saale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Westphal, Lore" sort="Westphal, Lore" uniqKey="Westphal L" first="Lore" last="Westphal">Lore Westphal</name>
</author>
<author>
<name sortKey="Schmotz, Constanze" sort="Schmotz, Constanze" uniqKey="Schmotz C" first="Constanze" last="Schmotz">Constanze Schmotz</name>
</author>
<author>
<name sortKey="Prade, Elke" sort="Prade, Elke" uniqKey="Prade E" first="Elke" last="Prade">Elke Prade</name>
</author>
<author>
<name sortKey="Scheel, Dierk" sort="Scheel, Dierk" uniqKey="Scheel D" first="Dierk" last="Scheel">Dierk Scheel</name>
</author>
<author>
<name sortKey="Glawischnig, Erich" sort="Glawischnig, Erich" uniqKey="Glawischnig E" first="Erich" last="Glawischnig">Erich Glawischnig</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Arabidopsis Proteins (physiology)</term>
<term>Cyanides (chemistry)</term>
<term>Cyanides (metabolism)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (physiology)</term>
<term>Indoles (chemistry)</term>
<term>Indoles (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Metabolomics (MeSH)</term>
<term>NADP (metabolism)</term>
<term>Thiazoles (chemistry)</term>
<term>Thiazoles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cyanures (composition chimique)</term>
<term>Cyanures (métabolisme)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (physiologie)</term>
<term>Indoles (composition chimique)</term>
<term>Indoles (métabolisme)</term>
<term>Métabolomique (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines d'Arabidopsis (physiologie)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Thiazoles (composition chimique)</term>
<term>Thiazoles (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cyanides</term>
<term>Cysteine</term>
<term>Indoles</term>
<term>Thiazoles</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cyanures</term>
<term>Cystéine</term>
<term>Indoles</term>
<term>Thiazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Cyanides</term>
<term>Cysteine</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Indoles</term>
<term>NADP</term>
<term>Thiazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cyanures</term>
<term>Cystéine</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Indoles</term>
<term>NADP</term>
<term>Protéines d'Arabidopsis</term>
<term>Thiazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mass Spectrometry</term>
<term>Metabolomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolomique</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, gamma-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate-treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19567706</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>1830-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.109.066670</ELocationID>
<Abstract>
<AbstractText>Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, gamma-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate-treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Böttcher</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Stress, Leibniz Institute of Plant Biochemistry, 06120 Halle/Saale, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Westphal</LastName>
<ForeName>Lore</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmotz</LastName>
<ForeName>Constanze</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prade</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scheel</LastName>
<ForeName>Dierk</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Glawischnig</LastName>
<ForeName>Erich</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003486">Cyanides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007211">Indoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013844">Thiazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C102405">camalexin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AG97OFW8JW</RegistryNumber>
<NameOfSubstance UI="C016516">indole-3-acetonitrile</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.-</RegistryNumber>
<NameOfSubstance UI="C417307">PAD3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003486" MajorTopicYN="N">Cyanides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007211" MajorTopicYN="N">Indoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013844" MajorTopicYN="N">Thiazoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19567706</ArticleId>
<ArticleId IdType="pii">tpc.109.066670</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.109.066670</ArticleId>
<ArticleId IdType="pmc">PMC2714930</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):8245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1996 Nov;9(8):748-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8870273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jul;13(7):1499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11449047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12(10):1811-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Jan;53(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Sep 15;393(2):222-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11556809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Jul 1;4(4):237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1992 Nov 6;582(1-2):131-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1491032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Nov;69(15):2655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):2021-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 May;58(3):499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):2107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2007 Feb 1;79(3):1187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8090752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):978-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18612075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 25;283(30):21102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3721-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2160-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Feb;113(2):463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9046593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Oct 1;322(2):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32338-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Jan;53(2):161-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10680168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;272:51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8791762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):778-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2002 Oct;10(10):3307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Feb;69(3):663-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17920088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 May;69(7):1457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Feb;57(3):555-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18939963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):731-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Dec 1;16(23):3100-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 24;270(8):3506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7876084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):1058-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Aug 20;27(16):2214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Jan;70(2):185-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Mar;65(6):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):2039-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(5):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Feb;68(4):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1304-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Glawischnig, Erich" sort="Glawischnig, Erich" uniqKey="Glawischnig E" first="Erich" last="Glawischnig">Erich Glawischnig</name>
<name sortKey="Prade, Elke" sort="Prade, Elke" uniqKey="Prade E" first="Elke" last="Prade">Elke Prade</name>
<name sortKey="Scheel, Dierk" sort="Scheel, Dierk" uniqKey="Scheel D" first="Dierk" last="Scheel">Dierk Scheel</name>
<name sortKey="Schmotz, Constanze" sort="Schmotz, Constanze" uniqKey="Schmotz C" first="Constanze" last="Schmotz">Constanze Schmotz</name>
<name sortKey="Westphal, Lore" sort="Westphal, Lore" uniqKey="Westphal L" first="Lore" last="Westphal">Lore Westphal</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Bottcher, Christoph" sort="Bottcher, Christoph" uniqKey="Bottcher C" first="Christoph" last="Böttcher">Christoph Böttcher</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19567706
   |texte=   The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19567706" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024