Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.

Identifieur interne : 001A24 ( Main/Exploration ); précédent : 001A23; suivant : 001A25

The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.

Auteurs : John W. Whitaker [Royaume-Uni] ; Glenn A. Mcconkey ; David R. Westhead

Source :

RBID : pubmed:19368726

Descripteurs français

English descriptors

Abstract

BACKGROUND

Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes.

RESULTS

The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae.

CONCLUSIONS

The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.


DOI: 10.1186/gb-2009-10-4-r36
PubMed: 19368726
PubMed Central: PMC2688927


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.</title>
<author>
<name sortKey="Whitaker, John W" sort="Whitaker, John W" uniqKey="Whitaker J" first="John W" last="Whitaker">John W. Whitaker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcconkey, Glenn A" sort="Mcconkey, Glenn A" uniqKey="Mcconkey G" first="Glenn A" last="Mcconkey">Glenn A. Mcconkey</name>
</author>
<author>
<name sortKey="Westhead, David R" sort="Westhead, David R" uniqKey="Westhead D" first="David R" last="Westhead">David R. Westhead</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19368726</idno>
<idno type="pmid">19368726</idno>
<idno type="doi">10.1186/gb-2009-10-4-r36</idno>
<idno type="pmc">PMC2688927</idno>
<idno type="wicri:Area/Main/Corpus">001B13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B13</idno>
<idno type="wicri:Area/Main/Curation">001B13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B13</idno>
<idno type="wicri:Area/Main/Exploration">001B13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.</title>
<author>
<name sortKey="Whitaker, John W" sort="Whitaker, John W" uniqKey="Whitaker J" first="John W" last="Whitaker">John W. Whitaker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT</wicri:regionArea>
<orgName type="university">Université de Leeds</orgName>
<placeName>
<settlement type="city">Leeds</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Yorkshire-et-Humber</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcconkey, Glenn A" sort="Mcconkey, Glenn A" uniqKey="Mcconkey G" first="Glenn A" last="Mcconkey">Glenn A. Mcconkey</name>
</author>
<author>
<name sortKey="Westhead, David R" sort="Westhead, David R" uniqKey="Westhead D" first="David R" last="Westhead">David R. Westhead</name>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacteria (enzymology)</term>
<term>Bacteria (genetics)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Enzymes (genetics)</term>
<term>Enzymes (metabolism)</term>
<term>Eukaryotic Cells (metabolism)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Leishmania (genetics)</term>
<term>Leishmania (metabolism)</term>
<term>Lipopolysaccharides (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (metabolism)</term>
<term>Plasmodium (genetics)</term>
<term>Plasmodium (metabolism)</term>
<term>Saccharomyces (genetics)</term>
<term>Saccharomyces (metabolism)</term>
<term>Xylose (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactéries (enzymologie)</term>
<term>Bactéries (génétique)</term>
<term>Cellules eucaryotes (métabolisme)</term>
<term>Enzymes (génétique)</term>
<term>Enzymes (métabolisme)</term>
<term>Leishmania (génétique)</term>
<term>Leishmania (métabolisme)</term>
<term>Lipopolysaccharides (métabolisme)</term>
<term>Phytophthora (génétique)</term>
<term>Phytophthora (métabolisme)</term>
<term>Plasmodium (génétique)</term>
<term>Plasmodium (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Saccharomyces (génétique)</term>
<term>Saccharomyces (métabolisme)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
<term>Xylose (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Leishmania</term>
<term>Phytophthora</term>
<term>Plasmodium</term>
<term>Saccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries</term>
<term>Enzymes</term>
<term>Leishmania</term>
<term>Phytophthora</term>
<term>Plasmodium</term>
<term>Protéines bactériennes</term>
<term>Saccharomyces</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Enzymes</term>
<term>Eukaryotic Cells</term>
<term>Leishmania</term>
<term>Lipopolysaccharides</term>
<term>Phytophthora</term>
<term>Plasmodium</term>
<term>Saccharomyces</term>
<term>Xylose</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules eucaryotes</term>
<term>Enzymes</term>
<term>Leishmania</term>
<term>Lipopolysaccharides</term>
<term>Phytophthora</term>
<term>Plasmodium</term>
<term>Protéines bactériennes</term>
<term>Saccharomyces</term>
<term>Xylose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Transfer, Horizontal</term>
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Transfert horizontal de gène</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19368726</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.</ArticleTitle>
<Pagination>
<MedlinePgn>R36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/gb-2009-10-4-r36</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Whitaker</LastName>
<ForeName>John W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McConkey</LastName>
<ForeName>Glenn A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Westhead</LastName>
<ForeName>David R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/C52101X/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A1TA934AKO</RegistryNumber>
<NameOfSubstance UI="D014994">Xylose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="Y">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007891" MajorTopicYN="N">Leishmania</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010961" MajorTopicYN="N">Plasmodium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012440" MajorTopicYN="N">Saccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014994" MajorTopicYN="N">Xylose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19368726</ArticleId>
<ArticleId IdType="pii">gb-2009-10-4-r36</ArticleId>
<ArticleId IdType="doi">10.1186/gb-2009-10-4-r36</ArticleId>
<ArticleId IdType="pmc">PMC2688927</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2005 May;22(5):1299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:461-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(17):5231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 May;3(5):e130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15799709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2004 Mar 9;34(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17894863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(2):204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2007;41:147-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jan 22;12(2):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(2):e4524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2001 Jun;52(6):540-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 1991 Aug;60(2):72-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1839492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vector Borne Dis. 2006 Dec;43(4):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17175700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1067-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12552132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 12;315(5809):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2007 Apr;23(4):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Sep;16(9):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16899658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Mar 26;283(5410):2027-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10206909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Feb;3(2):210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Dec;37(12):1372-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16311593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Nov;179(21):6699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9352919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 1;306(5693):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D623-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Aug;9(8):605-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18591983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Jun 1;163(1):31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9631542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(11):R88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15535864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Issues Mol Biol. 2005 Jan;7(1):57-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15580780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Nov;10(11):1719-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Res. 2005 Jun;96(3):184-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15844009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Nov;1(5):e62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(4):1399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15745999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Sep 19;16(18):1857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Dec;22(12):2343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Aug;11(8):763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9675892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D531-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2002;71:635-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 Jun;48(6):2185-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2002 Jan 29;357(1417):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Mar;23(3):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2001 Mar 26;11(6):789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Jun 1;32(11):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12031902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2005 Jan;139(1):107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endotoxin Res. 2007;13(2):69-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17621548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jan 24;272(4):2046-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8999899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1997 Apr;44(4):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9089078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Sep-Oct;8(5):768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7579621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Sep 3;285(5433):1573-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 15;29(2):545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11139625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1999 Oct;154(S4):S146-S163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(6):R99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Sep;175(18):5839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8376331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Yorkshire-et-Humber</li>
</region>
<settlement>
<li>Leeds</li>
</settlement>
<orgName>
<li>Université de Leeds</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Mcconkey, Glenn A" sort="Mcconkey, Glenn A" uniqKey="Mcconkey G" first="Glenn A" last="Mcconkey">Glenn A. Mcconkey</name>
<name sortKey="Westhead, David R" sort="Westhead, David R" uniqKey="Westhead D" first="David R" last="Westhead">David R. Westhead</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Whitaker, John W" sort="Whitaker, John W" uniqKey="Whitaker J" first="John W" last="Whitaker">John W. Whitaker</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19368726
   |texte=   The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19368726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024