Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.

Identifieur interne : 001152 ( Main/Corpus ); précédent : 001151; suivant : 001153

Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.

Auteurs : Feng Lin ; Meixia Zhao ; Douglas D. Baumann ; Jieqing Ping ; Lianjun Sun ; Yunfeng Liu ; Biao Zhang ; Zongxiang Tang ; Elisa Hughes ; Rebecca W. Doerge ; Teresa J. Hughes ; Jianxin Ma

Source :

RBID : pubmed:24410936

English descriptors

Abstract

BACKGROUND

Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen.

RESULTS

A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters.

CONCLUSIONS

This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.


DOI: 10.1186/1471-2164-15-18
PubMed: 24410936
PubMed Central: PMC3893405

Links to Exploration step

pubmed:24410936

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.</title>
<author>
<name sortKey="Lin, Feng" sort="Lin, Feng" uniqKey="Lin F" first="Feng" last="Lin">Feng Lin</name>
</author>
<author>
<name sortKey="Zhao, Meixia" sort="Zhao, Meixia" uniqKey="Zhao M" first="Meixia" last="Zhao">Meixia Zhao</name>
</author>
<author>
<name sortKey="Baumann, Douglas D" sort="Baumann, Douglas D" uniqKey="Baumann D" first="Douglas D" last="Baumann">Douglas D. Baumann</name>
</author>
<author>
<name sortKey="Ping, Jieqing" sort="Ping, Jieqing" uniqKey="Ping J" first="Jieqing" last="Ping">Jieqing Ping</name>
</author>
<author>
<name sortKey="Sun, Lianjun" sort="Sun, Lianjun" uniqKey="Sun L" first="Lianjun" last="Sun">Lianjun Sun</name>
</author>
<author>
<name sortKey="Liu, Yunfeng" sort="Liu, Yunfeng" uniqKey="Liu Y" first="Yunfeng" last="Liu">Yunfeng Liu</name>
</author>
<author>
<name sortKey="Zhang, Biao" sort="Zhang, Biao" uniqKey="Zhang B" first="Biao" last="Zhang">Biao Zhang</name>
</author>
<author>
<name sortKey="Tang, Zongxiang" sort="Tang, Zongxiang" uniqKey="Tang Z" first="Zongxiang" last="Tang">Zongxiang Tang</name>
</author>
<author>
<name sortKey="Hughes, Elisa" sort="Hughes, Elisa" uniqKey="Hughes E" first="Elisa" last="Hughes">Elisa Hughes</name>
</author>
<author>
<name sortKey="Doerge, Rebecca W" sort="Doerge, Rebecca W" uniqKey="Doerge R" first="Rebecca W" last="Doerge">Rebecca W. Doerge</name>
</author>
<author>
<name sortKey="Hughes, Teresa J" sort="Hughes, Teresa J" uniqKey="Hughes T" first="Teresa J" last="Hughes">Teresa J. Hughes</name>
<affiliation>
<nlm:affiliation>Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA. hughestj@purdue.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jianxin" sort="Ma, Jianxin" uniqKey="Ma J" first="Jianxin" last="Ma">Jianxin Ma</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24410936</idno>
<idno type="pmid">24410936</idno>
<idno type="doi">10.1186/1471-2164-15-18</idno>
<idno type="pmc">PMC3893405</idno>
<idno type="wicri:Area/Main/Corpus">001152</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001152</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.</title>
<author>
<name sortKey="Lin, Feng" sort="Lin, Feng" uniqKey="Lin F" first="Feng" last="Lin">Feng Lin</name>
</author>
<author>
<name sortKey="Zhao, Meixia" sort="Zhao, Meixia" uniqKey="Zhao M" first="Meixia" last="Zhao">Meixia Zhao</name>
</author>
<author>
<name sortKey="Baumann, Douglas D" sort="Baumann, Douglas D" uniqKey="Baumann D" first="Douglas D" last="Baumann">Douglas D. Baumann</name>
</author>
<author>
<name sortKey="Ping, Jieqing" sort="Ping, Jieqing" uniqKey="Ping J" first="Jieqing" last="Ping">Jieqing Ping</name>
</author>
<author>
<name sortKey="Sun, Lianjun" sort="Sun, Lianjun" uniqKey="Sun L" first="Lianjun" last="Sun">Lianjun Sun</name>
</author>
<author>
<name sortKey="Liu, Yunfeng" sort="Liu, Yunfeng" uniqKey="Liu Y" first="Yunfeng" last="Liu">Yunfeng Liu</name>
</author>
<author>
<name sortKey="Zhang, Biao" sort="Zhang, Biao" uniqKey="Zhang B" first="Biao" last="Zhang">Biao Zhang</name>
</author>
<author>
<name sortKey="Tang, Zongxiang" sort="Tang, Zongxiang" uniqKey="Tang Z" first="Zongxiang" last="Tang">Zongxiang Tang</name>
</author>
<author>
<name sortKey="Hughes, Elisa" sort="Hughes, Elisa" uniqKey="Hughes E" first="Elisa" last="Hughes">Elisa Hughes</name>
</author>
<author>
<name sortKey="Doerge, Rebecca W" sort="Doerge, Rebecca W" uniqKey="Doerge R" first="Rebecca W" last="Doerge">Rebecca W. Doerge</name>
</author>
<author>
<name sortKey="Hughes, Teresa J" sort="Hughes, Teresa J" uniqKey="Hughes T" first="Teresa J" last="Hughes">Teresa J. Hughes</name>
<affiliation>
<nlm:affiliation>Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA. hughestj@purdue.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jianxin" sort="Ma, Jianxin" uniqKey="Ma J" first="Jianxin" last="Ma">Jianxin Ma</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Phytophthora (isolation & purification)</term>
<term>Phytophthora (physiology)</term>
<term>Plant Growth Regulators (genetics)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (parasitology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (metabolism)</term>
<term>Plant Stems (parasitology)</term>
<term>Signal Transduction (genetics)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (metabolism)</term>
<term>Soybeans (parasitology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Signal Transduction</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Cluster Analysis</term>
<term>Genes, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24410936</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.</ArticleTitle>
<Pagination>
<MedlinePgn>18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-18</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Meixia</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baumann</LastName>
<ForeName>Douglas D</ForeName>
<Initials>DD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ping</LastName>
<ForeName>Jieqing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Lianjun</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yunfeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Biao</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Zongxiang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Elisa</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doerge</LastName>
<ForeName>Rebecca W</ForeName>
<Initials>RW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Teresa J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA. hughestj@purdue.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Jianxin</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24410936</ArticleId>
<ArticleId IdType="pii">1471-2164-15-18</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-18</ArticleId>
<ArticleId IdType="pmc">PMC3893405</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Hered. 2001 Sep-Oct;92(5):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breed Sci. 2012 Jan;61(5):511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23136490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Oct;18(10):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16255242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):383-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2009;10:93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19785741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Aug;10(8):1321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:317-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2011 Sep 07;9:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 7;112(3):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Dec;18(6):483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Sep;91(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Aug;126(8):2177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Jun;143(2):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8725243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2822-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 9;334(6061):1405-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2008;9:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1219-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21505068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 9;279(2):1132-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14578352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Feb;118(3):399-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18825360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1051-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 Sep-Oct;96(5):536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jun;10(6):1021-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):454-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Oct;37(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jun 15;22(12):1540-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595560</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24410936
   |texte=   Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24410936" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024