Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

Identifieur interne : 000F85 ( Main/Corpus ); précédent : 000F84; suivant : 000F86

A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

Auteurs : Huajian Zhang ; Qun Wu ; Shun Cao ; Tongyao Zhao ; Ling Chen ; Peitong Zhuang ; Xiuhong Zhou ; Zhimou Gao

Source :

RBID : pubmed:25149470

English descriptors

Abstract

In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.

DOI: 10.1007/s11103-014-0244-3
PubMed: 25149470

Links to Exploration step

pubmed:25149470

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.</title>
<author>
<name sortKey="Zhang, Huajian" sort="Zhang, Huajian" uniqKey="Zhang H" first="Huajian" last="Zhang">Huajian Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China, hjzhang@ahau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Qun" sort="Wu, Qun" uniqKey="Wu Q" first="Qun" last="Wu">Qun Wu</name>
</author>
<author>
<name sortKey="Cao, Shun" sort="Cao, Shun" uniqKey="Cao S" first="Shun" last="Cao">Shun Cao</name>
</author>
<author>
<name sortKey="Zhao, Tongyao" sort="Zhao, Tongyao" uniqKey="Zhao T" first="Tongyao" last="Zhao">Tongyao Zhao</name>
</author>
<author>
<name sortKey="Chen, Ling" sort="Chen, Ling" uniqKey="Chen L" first="Ling" last="Chen">Ling Chen</name>
</author>
<author>
<name sortKey="Zhuang, Peitong" sort="Zhuang, Peitong" uniqKey="Zhuang P" first="Peitong" last="Zhuang">Peitong Zhuang</name>
</author>
<author>
<name sortKey="Zhou, Xiuhong" sort="Zhou, Xiuhong" uniqKey="Zhou X" first="Xiuhong" last="Zhou">Xiuhong Zhou</name>
</author>
<author>
<name sortKey="Gao, Zhimou" sort="Gao, Zhimou" uniqKey="Gao Z" first="Zhimou" last="Gao">Zhimou Gao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25149470</idno>
<idno type="pmid">25149470</idno>
<idno type="doi">10.1007/s11103-014-0244-3</idno>
<idno type="wicri:Area/Main/Corpus">000F85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.</title>
<author>
<name sortKey="Zhang, Huajian" sort="Zhang, Huajian" uniqKey="Zhang H" first="Huajian" last="Zhang">Huajian Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China, hjzhang@ahau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Qun" sort="Wu, Qun" uniqKey="Wu Q" first="Qun" last="Wu">Qun Wu</name>
</author>
<author>
<name sortKey="Cao, Shun" sort="Cao, Shun" uniqKey="Cao S" first="Shun" last="Cao">Shun Cao</name>
</author>
<author>
<name sortKey="Zhao, Tongyao" sort="Zhao, Tongyao" uniqKey="Zhao T" first="Tongyao" last="Zhao">Tongyao Zhao</name>
</author>
<author>
<name sortKey="Chen, Ling" sort="Chen, Ling" uniqKey="Chen L" first="Ling" last="Chen">Ling Chen</name>
</author>
<author>
<name sortKey="Zhuang, Peitong" sort="Zhuang, Peitong" uniqKey="Zhuang P" first="Peitong" last="Zhuang">Peitong Zhuang</name>
</author>
<author>
<name sortKey="Zhou, Xiuhong" sort="Zhou, Xiuhong" uniqKey="Zhou X" first="Xiuhong" last="Zhou">Xiuhong Zhou</name>
</author>
<author>
<name sortKey="Gao, Zhimou" sort="Gao, Zhimou" uniqKey="Gao Z" first="Zhimou" last="Gao">Zhimou Gao</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Ascomycota (genetics)</term>
<term>Ascomycota (metabolism)</term>
<term>Ascomycota (physiology)</term>
<term>Carboxylic Ester Hydrolases (classification)</term>
<term>Carboxylic Ester Hydrolases (genetics)</term>
<term>Carboxylic Ester Hydrolases (metabolism)</term>
<term>Catechol Oxidase (metabolism)</term>
<term>Disease Resistance (genetics)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phenylalanine Ammonia-Lyase (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plants (genetics)</term>
<term>Plants (microbiology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Carboxylic Ester Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Carboxylic Ester Hydrolases</term>
<term>Disease Resistance</term>
<term>Fungal Proteins</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Plants</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ascomycota</term>
<term>Carboxylic Ester Hydrolases</term>
<term>Catechol Oxidase</term>
<term>Fungal Proteins</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Plants</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Gene Expression Regulation, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Amino Acid</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25149470</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>4-5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>495-511</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-014-0244-3</ELocationID>
<Abstract>
<AbstractText>In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Huajian</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China, hjzhang@ahau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Qun</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Shun</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Tongyao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhuang</LastName>
<ForeName>Peitong</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xiuhong</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Zhimou</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.1</RegistryNumber>
<NameOfSubstance UI="D004156">Catechol Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002265">Carboxylic Ester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="C019952">cutinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.3.1.24</RegistryNumber>
<NameOfSubstance UI="D010650">Phenylalanine Ammonia-Lyase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002265" MajorTopicYN="N">Carboxylic Ester Hydrolases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004156" MajorTopicYN="N">Catechol Oxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010650" MajorTopicYN="N">Phenylalanine Ammonia-Lyase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25149470</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-014-0244-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:545-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Feb 14;272(7):3924-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Dec;5(12):1565-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 19;283(38):25854-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Aug;29(8):1532-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16898016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):862-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Aug;120(4):1175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10444101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1373-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Oct 1;7(10):1284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9114072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(1):100-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Dec;25(12 ):1639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22835275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jun;9(6):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Sep;3(5):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4080-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7753774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Nov;51(11):1915-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Jun;4(6):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1392588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jun;65(9):2483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(3):991-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20306187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Mar 6;136(5):978.e1-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19269372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jan;6(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2674-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Aug;61(13):3799-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Mar;229(4):757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19084995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Aug;3(8):543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Oct;90(10):1173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2007 Sep;32(6):1119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17954972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Mar;25(3):1143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Nov;46(11):1015-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(1):36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Aug;16(4):527-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):3109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jul 3;257(5066):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jan;35(1):72-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21895695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):742-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(6):972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Nov;17(11):644-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Oct;11(10):1453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Nov;81(2):359-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):2053-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20172964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Oct;7(8):763-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754836</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25149470
   |texte=   A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25149470" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024