Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth.

Identifieur interne : 000629 ( Main/Corpus ); précédent : 000628; suivant : 000630

Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth.

Auteurs : Sharifah Farhana Syed-Ab-Rahman ; Lilia C. Carvalhais ; Elvis Chua ; Yawen Xiao ; Taylor J. Wass ; Peer M. Schenk

Source :

RBID : pubmed:30405657

Abstract

Bacterial isolates obtained from the rhizosphere of Arabidopsis and a plantless compost potting mix was screened for anti-oomycete activity against Phytophthora capsici, Phytophthora citricola, Phytophthora palmivora, and Phytophthora cinnamomi. Three out of 48 isolates exhibited more than 65% inhibition against all tested Phytophthora species and were selected for further studies. These strains, named UQ154, UQ156, and UQ202, are closely related to Bacillus amyloliquefaciens, Bacillus velezensis, and Acinetobacter sp., respectively, based on 16S rDNA sequence analysis. The isolates were evaluated for their ability to fix nitrogen, solubilize phosphate, as well as for siderophore, indoleacetic acid, cell wall degrading enzymes and biofilm production. Their plant growth promoting activities were evaluated by measuring their effect on the germination percentage, root and shoot length, and seedling vigor of lettuce plants. All of these traits were significantly enhanced in plants grown from seeds inoculated with the isolates compared with control plants. Moreover, bacteria-inoculated P. capsici-infected chili plants exhibited improved productivity based on CO2 assimilation rates. Both real-time quantitative PCR and disease severity index revealed significant decreases in pathogen load in infected chili root tissues when plants were previously inoculated with the isolates. Biocontrol activity may result from the secretion of diketopiperazines as identified by Gas chromatography-mass spectrometry analysis of bacterial cultures' extracts. Collectively, this work demonstrates the potential of bacterial isolates to control Phytophthora infection and promote plant growth. They can, therefore be considered as candidate microbial biofertilizers and biopesticides.

DOI: 10.3389/fpls.2018.01502
PubMed: 30405657
PubMed Central: PMC6201231

Links to Exploration step

pubmed:30405657

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Soil Bacterial Isolates Suppressing Different
<i>Phytophthora</i>
spp. and Promoting Plant Growth.</title>
<author>
<name sortKey="Syed Ab Rahman, Sharifah Farhana" sort="Syed Ab Rahman, Sharifah Farhana" uniqKey="Syed Ab Rahman S" first="Sharifah Farhana" last="Syed-Ab-Rahman">Sharifah Farhana Syed-Ab-Rahman</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalhais, Lilia C" sort="Carvalhais, Lilia C" uniqKey="Carvalhais L" first="Lilia C" last="Carvalhais">Lilia C. Carvalhais</name>
<affiliation>
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chua, Elvis" sort="Chua, Elvis" uniqKey="Chua E" first="Elvis" last="Chua">Elvis Chua</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Yawen" sort="Xiao, Yawen" uniqKey="Xiao Y" first="Yawen" last="Xiao">Yawen Xiao</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wass, Taylor J" sort="Wass, Taylor J" uniqKey="Wass T" first="Taylor J" last="Wass">Taylor J. Wass</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schenk, Peer M" sort="Schenk, Peer M" uniqKey="Schenk P" first="Peer M" last="Schenk">Peer M. Schenk</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30405657</idno>
<idno type="pmid">30405657</idno>
<idno type="doi">10.3389/fpls.2018.01502</idno>
<idno type="pmc">PMC6201231</idno>
<idno type="wicri:Area/Main/Corpus">000629</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000629</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Soil Bacterial Isolates Suppressing Different
<i>Phytophthora</i>
spp. and Promoting Plant Growth.</title>
<author>
<name sortKey="Syed Ab Rahman, Sharifah Farhana" sort="Syed Ab Rahman, Sharifah Farhana" uniqKey="Syed Ab Rahman S" first="Sharifah Farhana" last="Syed-Ab-Rahman">Sharifah Farhana Syed-Ab-Rahman</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalhais, Lilia C" sort="Carvalhais, Lilia C" uniqKey="Carvalhais L" first="Lilia C" last="Carvalhais">Lilia C. Carvalhais</name>
<affiliation>
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chua, Elvis" sort="Chua, Elvis" uniqKey="Chua E" first="Elvis" last="Chua">Elvis Chua</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Yawen" sort="Xiao, Yawen" uniqKey="Xiao Y" first="Yawen" last="Xiao">Yawen Xiao</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wass, Taylor J" sort="Wass, Taylor J" uniqKey="Wass T" first="Taylor J" last="Wass">Taylor J. Wass</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schenk, Peer M" sort="Schenk, Peer M" uniqKey="Schenk P" first="Peer M" last="Schenk">Peer M. Schenk</name>
<affiliation>
<nlm:affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial isolates obtained from the rhizosphere of
<i>Arabidopsis</i>
and a plantless compost potting mix was screened for anti-oomycete activity against
<i>Phytophthora capsici</i>
,
<i>Phytophthora citricola</i>
,
<i>Phytophthora palmivora</i>
, and
<i>Phytophthora cinnamomi</i>
. Three out of 48 isolates exhibited more than 65% inhibition against all tested
<i>Phytophthora</i>
species and were selected for further studies. These strains, named UQ154, UQ156, and UQ202, are closely related to
<i>Bacillus amyloliquefaciens</i>
,
<i>Bacillus velezensis</i>
, and
<i>Acinetobacter</i>
sp., respectively, based on 16S rDNA sequence analysis. The isolates were evaluated for their ability to fix nitrogen, solubilize phosphate, as well as for siderophore, indoleacetic acid, cell wall degrading enzymes and biofilm production. Their plant growth promoting activities were evaluated by measuring their effect on the germination percentage, root and shoot length, and seedling vigor of lettuce plants. All of these traits were significantly enhanced in plants grown from seeds inoculated with the isolates compared with control plants. Moreover, bacteria-inoculated
<i>P. capsici</i>
-infected chili plants exhibited improved productivity based on CO
<sub>2</sub>
assimilation rates. Both real-time quantitative PCR and disease severity index revealed significant decreases in pathogen load in infected chili root tissues when plants were previously inoculated with the isolates. Biocontrol activity may result from the secretion of diketopiperazines as identified by Gas chromatography-mass spectrometry analysis of bacterial cultures' extracts. Collectively, this work demonstrates the potential of bacterial isolates to control
<i>Phytophthora</i>
infection and promote plant growth. They can, therefore be considered as candidate microbial biofertilizers and biopesticides.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30405657</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Soil Bacterial Isolates Suppressing Different
<i>Phytophthora</i>
spp. and Promoting Plant Growth.</ArticleTitle>
<Pagination>
<MedlinePgn>1502</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01502</ELocationID>
<Abstract>
<AbstractText>Bacterial isolates obtained from the rhizosphere of
<i>Arabidopsis</i>
and a plantless compost potting mix was screened for anti-oomycete activity against
<i>Phytophthora capsici</i>
,
<i>Phytophthora citricola</i>
,
<i>Phytophthora palmivora</i>
, and
<i>Phytophthora cinnamomi</i>
. Three out of 48 isolates exhibited more than 65% inhibition against all tested
<i>Phytophthora</i>
species and were selected for further studies. These strains, named UQ154, UQ156, and UQ202, are closely related to
<i>Bacillus amyloliquefaciens</i>
,
<i>Bacillus velezensis</i>
, and
<i>Acinetobacter</i>
sp., respectively, based on 16S rDNA sequence analysis. The isolates were evaluated for their ability to fix nitrogen, solubilize phosphate, as well as for siderophore, indoleacetic acid, cell wall degrading enzymes and biofilm production. Their plant growth promoting activities were evaluated by measuring their effect on the germination percentage, root and shoot length, and seedling vigor of lettuce plants. All of these traits were significantly enhanced in plants grown from seeds inoculated with the isolates compared with control plants. Moreover, bacteria-inoculated
<i>P. capsici</i>
-infected chili plants exhibited improved productivity based on CO
<sub>2</sub>
assimilation rates. Both real-time quantitative PCR and disease severity index revealed significant decreases in pathogen load in infected chili root tissues when plants were previously inoculated with the isolates. Biocontrol activity may result from the secretion of diketopiperazines as identified by Gas chromatography-mass spectrometry analysis of bacterial cultures' extracts. Collectively, this work demonstrates the potential of bacterial isolates to control
<i>Phytophthora</i>
infection and promote plant growth. They can, therefore be considered as candidate microbial biofertilizers and biopesticides.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Syed-Ab-Rahman</LastName>
<ForeName>Sharifah Farhana</ForeName>
<Initials>SF</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carvalhais</LastName>
<ForeName>Lilia C</ForeName>
<Initials>LC</Initials>
<AffiliationInfo>
<Affiliation>Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chua</LastName>
<ForeName>Elvis</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Yawen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wass</LastName>
<ForeName>Taylor J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schenk</LastName>
<ForeName>Peer M</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">biocontrol agent</Keyword>
<Keyword MajorTopicYN="N">microbial biofertilizer</Keyword>
<Keyword MajorTopicYN="N">microbial biopesticide</Keyword>
<Keyword MajorTopicYN="N">oomycete</Keyword>
<Keyword MajorTopicYN="N">plant growth-promoting bacteria</Keyword>
<Keyword MajorTopicYN="N">soil microbial antagonism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30405657</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01502</ArticleId>
<ArticleId IdType="pmc">PMC6201231</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Chem Biol. 2011 Apr;15(2):328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21277822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 May 31;546(7656):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28569796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2009 Apr;58(4):371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19137371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Aug 17;8:1477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28861045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Jan;160(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2952030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 04;4:235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23847639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2012 Sep 6;167(8):493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22677517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1951 Jan;26(1):192-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Feb;63:170-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS PharmSciTech. 2003 Nov 05;4(4):E56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1976 Oct;22(10):1464-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2013 Apr;28(4):230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2016 May-Jun;186-187:37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2004;96(3):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2002 Oct;45(4):250-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:359-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Aug;107(8):928-936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28440700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2017 Oct 6;33(11):197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28986676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Dec;95(12):1423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2015 Dec;38(4):401-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26537605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Limnol Oceanogr Methods. 2010 Apr;8(APR):146-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21822404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Aug;76(2):459-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2009 Feb;22(1):61-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19130268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Feb;79(3):808-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23160135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 09;7:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 05;5:358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25161657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jun;98(6):666-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 23;7:196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Jul 12;366(1573):1987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 Nov;113(5):1076-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22830299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 23;543(7646):513-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 02;6:1360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26869996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 Oct;113(4):914-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Nov;86(3):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Nov 21;228(2):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14638430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2007 Dec;97(12):1650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2008 Dec;46(12):3997-4003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18923006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Mar;21(3):187-198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2004 Nov;94(11):1259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2014 Oct;117(4):1168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25066530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2010 Apr 30;139(1-2):56-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2017 Apr;25(4):280-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28038926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2015 Mar;172:79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2011 Jun;21(6):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Sep;33(6):1254-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10510239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Nov;13(11):3047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2013 Jun 12;168(5):278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23305769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 13;6:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25821453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2014 Jan;172(2):741-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24122628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000629 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000629 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30405657
   |texte=   Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30405657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024