Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection.

Identifieur interne : 000628 ( Main/Corpus ); précédent : 000627; suivant : 000629

Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection.

Auteurs : Longming Zhu ; Yang Zhou ; Xiangnan Li ; Jinming Zhao ; Na Guo ; Han Xing

Source :

RBID : pubmed:30405667

Abstract

Soybean is one of the most important economic and oil crops across the world. Phytophthora root rot (PRR), caused by Phytophthora sojae (P. sojae), is a major disease in most soybean-growing regions worldwide. Here, we investigated metabolic changes in hypocotyls of two soybean lines, Nannong 10-1 (resistant line, R) and 06-070583 (susceptible line, S), at two time points (12 and 36 hpi) after P. sojae infection and metabolic differences between the R line and the S line. In total, 90 differentially accumulated metabolites (DAMs) were identified after P. sojae infection; the levels of 50 metabolites differed between the R line and the S line. There are 28 DAMs that not only differentially accumulated between the R line and the S line but also differentially accumulated after P. sojae infection. Based on the changes of these DAMs in response to P. sojae infection in different lines and at different timepoints, and the differences in the contents of these DAMs between the R line and the S line, we speculated that DAMs, including sugars (monosaccharides and oligosaccharides), organic acids (oxalic acid, cumic acid), amino acid derivatives, and other secondary metabolites (mannitol, octanal, hypoxanthine, and daidzein etc.) may participate in the metabolic-level defense response of soybean to P. sojae. In this study, an integrated pathway-level analysis of transcriptomics (obtained by RNA-Seq) and metabolomics data illustrated the poor connections and interdependencies between the metabolic and transcriptional responses of soybean to P. sojae infection. This work emphasizes the value of metabolomic studies of plant-pathogen interactions and paves the way for future research of critical metabolic determinants of the soybean-P. sojae interaction.

DOI: 10.3389/fpls.2018.01530
PubMed: 30405667
PubMed Central: PMC6206292

Links to Exploration step

pubmed:30405667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolomics Analysis of Soybean Hypocotyls in Response to
<i>Phytophthora sojae</i>
Infection.</title>
<author>
<name sortKey="Zhu, Longming" sort="Zhu, Longming" uniqKey="Zhu L" first="Longming" last="Zhu">Longming Zhu</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yang" sort="Zhou, Yang" uniqKey="Zhou Y" first="Yang" last="Zhou">Yang Zhou</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiangnan" sort="Li, Xiangnan" uniqKey="Li X" first="Xiangnan" last="Li">Xiangnan Li</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jinming" sort="Zhao, Jinming" uniqKey="Zhao J" first="Jinming" last="Zhao">Jinming Zhao</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Na" sort="Guo, Na" uniqKey="Guo N" first="Na" last="Guo">Na Guo</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xing, Han" sort="Xing, Han" uniqKey="Xing H" first="Han" last="Xing">Han Xing</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30405667</idno>
<idno type="pmid">30405667</idno>
<idno type="doi">10.3389/fpls.2018.01530</idno>
<idno type="pmc">PMC6206292</idno>
<idno type="wicri:Area/Main/Corpus">000628</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolomics Analysis of Soybean Hypocotyls in Response to
<i>Phytophthora sojae</i>
Infection.</title>
<author>
<name sortKey="Zhu, Longming" sort="Zhu, Longming" uniqKey="Zhu L" first="Longming" last="Zhu">Longming Zhu</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yang" sort="Zhou, Yang" uniqKey="Zhou Y" first="Yang" last="Zhou">Yang Zhou</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiangnan" sort="Li, Xiangnan" uniqKey="Li X" first="Xiangnan" last="Li">Xiangnan Li</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jinming" sort="Zhao, Jinming" uniqKey="Zhao J" first="Jinming" last="Zhao">Jinming Zhao</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Na" sort="Guo, Na" uniqKey="Guo N" first="Na" last="Guo">Na Guo</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xing, Han" sort="Xing, Han" uniqKey="Xing H" first="Han" last="Xing">Han Xing</name>
<affiliation>
<nlm:affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soybean is one of the most important economic and oil crops across the world. Phytophthora root rot (PRR), caused by
<i>Phytophthora sojae</i>
(
<i>P. sojae</i>
), is a major disease in most soybean-growing regions worldwide. Here, we investigated metabolic changes in hypocotyls of two soybean lines, Nannong 10-1 (resistant line, R) and 06-070583 (susceptible line, S), at two time points (12 and 36 hpi) after
<i>P. sojae</i>
infection and metabolic differences between the R line and the S line. In total, 90 differentially accumulated metabolites (DAMs) were identified after
<i>P. sojae</i>
infection; the levels of 50 metabolites differed between the R line and the S line. There are 28 DAMs that not only differentially accumulated between the R line and the S line but also differentially accumulated after
<i>P. sojae</i>
infection. Based on the changes of these DAMs in response to
<i>P. sojae</i>
infection in different lines and at different timepoints, and the differences in the contents of these DAMs between the R line and the S line, we speculated that DAMs, including sugars (monosaccharides and oligosaccharides), organic acids (oxalic acid, cumic acid), amino acid derivatives, and other secondary metabolites (mannitol, octanal, hypoxanthine, and daidzein etc.) may participate in the metabolic-level defense response of soybean to
<i>P. sojae</i>
. In this study, an integrated pathway-level analysis of transcriptomics (obtained by RNA-Seq) and metabolomics data illustrated the poor connections and interdependencies between the metabolic and transcriptional responses of soybean to
<i>P. sojae</i>
infection. This work emphasizes the value of metabolomic studies of plant-pathogen interactions and paves the way for future research of critical metabolic determinants of the soybean-
<i>P. sojae</i>
interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30405667</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolomics Analysis of Soybean Hypocotyls in Response to
<i>Phytophthora sojae</i>
Infection.</ArticleTitle>
<Pagination>
<MedlinePgn>1530</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01530</ELocationID>
<Abstract>
<AbstractText>Soybean is one of the most important economic and oil crops across the world. Phytophthora root rot (PRR), caused by
<i>Phytophthora sojae</i>
(
<i>P. sojae</i>
), is a major disease in most soybean-growing regions worldwide. Here, we investigated metabolic changes in hypocotyls of two soybean lines, Nannong 10-1 (resistant line, R) and 06-070583 (susceptible line, S), at two time points (12 and 36 hpi) after
<i>P. sojae</i>
infection and metabolic differences between the R line and the S line. In total, 90 differentially accumulated metabolites (DAMs) were identified after
<i>P. sojae</i>
infection; the levels of 50 metabolites differed between the R line and the S line. There are 28 DAMs that not only differentially accumulated between the R line and the S line but also differentially accumulated after
<i>P. sojae</i>
infection. Based on the changes of these DAMs in response to
<i>P. sojae</i>
infection in different lines and at different timepoints, and the differences in the contents of these DAMs between the R line and the S line, we speculated that DAMs, including sugars (monosaccharides and oligosaccharides), organic acids (oxalic acid, cumic acid), amino acid derivatives, and other secondary metabolites (mannitol, octanal, hypoxanthine, and daidzein etc.) may participate in the metabolic-level defense response of soybean to
<i>P. sojae</i>
. In this study, an integrated pathway-level analysis of transcriptomics (obtained by RNA-Seq) and metabolomics data illustrated the poor connections and interdependencies between the metabolic and transcriptional responses of soybean to
<i>P. sojae</i>
infection. This work emphasizes the value of metabolomic studies of plant-pathogen interactions and paves the way for future research of critical metabolic determinants of the soybean-
<i>P. sojae</i>
interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Longming</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiangnan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jinming</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xing</LastName>
<ForeName>Han</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora sojae</Keyword>
<Keyword MajorTopicYN="N">defense response</Keyword>
<Keyword MajorTopicYN="N">metabolomics</Keyword>
<Keyword MajorTopicYN="N">resistant metabolites</Keyword>
<Keyword MajorTopicYN="N">soybean</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30405667</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01530</ArticleId>
<ArticleId IdType="pmc">PMC6206292</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:675-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Jun;67(11):1104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Sep;7(9):1357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Sep;21(9):781-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27185334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Feb;132(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 May;277(9):2022-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1727-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2011 Sep 07;9:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Jan;40(1):121-137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27761892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 10;15:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24410936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2014 May 15;151:333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24423541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(6):1058-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Jan 26;10:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2002 Feb;53(2):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Jun;9(11):3156-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19526549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Apr;45(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Dec 7;16(1):259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27923345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 12;12(1):e0169950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28081566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Feb;62(4):637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12560039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 7;26(5):1857-1877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1051-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Apr;127(4):913-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):3989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolomics. 2010 Sep;6(3):451-465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30405667
   |texte=   Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30405667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024