Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.

Identifieur interne : 000C12 ( Main/Exploration ); précédent : 000C11; suivant : 000C13

Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.

Auteurs : E. Srebotnik ; K A Jensen ; S. Kawai ; K E Hammel

Source :

RBID : pubmed:16535732

Abstract

The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.

DOI: 10.1128/AEM.63.11.4435-4440.1997
PubMed: 16535732
PubMed Central: PMC1389288


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.</title>
<author>
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:16535732</idno>
<idno type="pmid">16535732</idno>
<idno type="pmc">PMC1389288</idno>
<idno type="doi">10.1128/AEM.63.11.4435-4440.1997</idno>
<idno type="wicri:Area/Main/Corpus">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000786</idno>
<idno type="wicri:Area/Main/Curation">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000786</idno>
<idno type="wicri:Area/Main/Exploration">000786</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.</title>
<author>
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16535732</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>63</Volume>
<Issue>11</Issue>
<PubDate>
<Year>1997</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.</ArticleTitle>
<Pagination>
<MedlinePgn>4435-40</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Srebotnik</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>K A</ForeName>
<Initials>KA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawai</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hammel</LastName>
<ForeName>K E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16535732</ArticleId>
<ArticleId IdType="pmc">PMC1389288</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.63.11.4435-4440.1997</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Sep;61(9):3407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Nov 15;33(45):13349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Nov 14;354(3):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Dec;59(12):4017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8285705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Aug 5;391(1-2):144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8706903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Jul;62(7):2660-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8779605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jun;59(6):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Apr;60(4):1383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Oct;62(10):3679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Aug;57(8):2240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1768094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 May;57(5):1453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1854201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 2;267(1):99-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2365094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1986 May 15;236(1):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3024619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16535732
   |texte=   Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16535732" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020