Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.

Identifieur interne : 000638 ( Main/Corpus ); précédent : 000637; suivant : 000639

Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.

Auteurs : Federico Tasca ; Lo Gorton ; Wolfgang Harreither ; Dietmar Haltrich ; Roland Ludwig ; Gilbert Nöll

Source :

RBID : pubmed:19256522

English descriptors

Abstract

Direct and mediated electron transfer (DET and MET) between the enzyme and electrodes were compared for cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete sordida (PsCDH). For DET, PsCDH was adsorbed at pyrolytic graphite (PG) electrodes while for MET the enzyme was covalently linked to a low potential Os redox polymer. Both types of electrodes were prepared in the presence of single walled carbon nanotubes (SWCNTs). DET requires the oxidation of the heme domain, while MET occurs partially via the heme and the flavin domain at pH 3.5. At pH 6 MET occurs solely via the flavin domain. Most probably, the interaction of the domains decreases from pH 3.5 to 6.0 due to electrostatic repulsion of deprotonated amino acid residues, covering the surfaces of both domains. MET starts at a lower potential than DET. The midpoint potentials at pH 3.5 for the flavin (40 mV) and the heme domain (170 mV) were determined with spectroelectrochemistry. The electrochemical and spectroelectrochemical measurements presented in this work are in conformity. The pH dependency of DET and MET was investigated for PsCDH. The optimum was observed between pH 4 and 4.5 pH for DET and in the range of pH 5-6 for MET. The current densities obtained by MET are 1 order of magnitude higher than by DET. During multicycle cyclic voltammetry experiments carried out at different pHs, the PsCDH modified electrode working by MET turned out to be very stable. In order to characterize a PsCDH modified anode working by MET with respect to biofuel cell applications, this electrode was combined with a Pt-black cathode as model for a membraneless biofuel cell. In comparison to DET, a 10 times higher maximum current and maximum power density in a biofuel cell application could be achieved by MET. While CDH modified electrodes working by DET are highly qualified for applications in amperometric biosensors, a much better performance as biofuel cell anodes can be obtained by MET. The use of CDH modified electrodes working by MET for biofuel cell applications results in a less positive onset of the electrocatalytic current (which may lead to an increased cell voltage), higher current and power density, and much better long-term stability over a broad range of pH.

DOI: 10.1021/ac900225z
PubMed: 19256522

Links to Exploration step

pubmed:19256522

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.</title>
<author>
<name sortKey="Tasca, Federico" sort="Tasca, Federico" uniqKey="Tasca F" first="Federico" last="Tasca">Federico Tasca</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
</author>
<author>
<name sortKey="Harreither, Wolfgang" sort="Harreither, Wolfgang" uniqKey="Harreither W" first="Wolfgang" last="Harreither">Wolfgang Harreither</name>
</author>
<author>
<name sortKey="Haltrich, Dietmar" sort="Haltrich, Dietmar" uniqKey="Haltrich D" first="Dietmar" last="Haltrich">Dietmar Haltrich</name>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
</author>
<author>
<name sortKey="Noll, Gilbert" sort="Noll, Gilbert" uniqKey="Noll G" first="Gilbert" last="Nöll">Gilbert Nöll</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19256522</idno>
<idno type="pmid">19256522</idno>
<idno type="doi">10.1021/ac900225z</idno>
<idno type="wicri:Area/Main/Corpus">000638</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000638</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.</title>
<author>
<name sortKey="Tasca, Federico" sort="Tasca, Federico" uniqKey="Tasca F" first="Federico" last="Tasca">Federico Tasca</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
</author>
<author>
<name sortKey="Harreither, Wolfgang" sort="Harreither, Wolfgang" uniqKey="Harreither W" first="Wolfgang" last="Harreither">Wolfgang Harreither</name>
</author>
<author>
<name sortKey="Haltrich, Dietmar" sort="Haltrich, Dietmar" uniqKey="Haltrich D" first="Dietmar" last="Haltrich">Dietmar Haltrich</name>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
</author>
<author>
<name sortKey="Noll, Gilbert" sort="Noll, Gilbert" uniqKey="Noll G" first="Gilbert" last="Nöll">Gilbert Nöll</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bioelectric Energy Sources (MeSH)</term>
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Electrochemistry (MeSH)</term>
<term>Electrodes (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Flavins (chemistry)</term>
<term>Heme (chemistry)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Spectrum Analysis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Flavins</term>
<term>Heme</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bioelectric Energy Sources</term>
<term>Electrochemistry</term>
<term>Electrodes</term>
<term>Electron Transport</term>
<term>Enzyme Stability</term>
<term>Hydrogen-Ion Concentration</term>
<term>Protein Structure, Tertiary</term>
<term>Spectrum Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Direct and mediated electron transfer (DET and MET) between the enzyme and electrodes were compared for cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete sordida (PsCDH). For DET, PsCDH was adsorbed at pyrolytic graphite (PG) electrodes while for MET the enzyme was covalently linked to a low potential Os redox polymer. Both types of electrodes were prepared in the presence of single walled carbon nanotubes (SWCNTs). DET requires the oxidation of the heme domain, while MET occurs partially via the heme and the flavin domain at pH 3.5. At pH 6 MET occurs solely via the flavin domain. Most probably, the interaction of the domains decreases from pH 3.5 to 6.0 due to electrostatic repulsion of deprotonated amino acid residues, covering the surfaces of both domains. MET starts at a lower potential than DET. The midpoint potentials at pH 3.5 for the flavin (40 mV) and the heme domain (170 mV) were determined with spectroelectrochemistry. The electrochemical and spectroelectrochemical measurements presented in this work are in conformity. The pH dependency of DET and MET was investigated for PsCDH. The optimum was observed between pH 4 and 4.5 pH for DET and in the range of pH 5-6 for MET. The current densities obtained by MET are 1 order of magnitude higher than by DET. During multicycle cyclic voltammetry experiments carried out at different pHs, the PsCDH modified electrode working by MET turned out to be very stable. In order to characterize a PsCDH modified anode working by MET with respect to biofuel cell applications, this electrode was combined with a Pt-black cathode as model for a membraneless biofuel cell. In comparison to DET, a 10 times higher maximum current and maximum power density in a biofuel cell application could be achieved by MET. While CDH modified electrodes working by DET are highly qualified for applications in amperometric biosensors, a much better performance as biofuel cell anodes can be obtained by MET. The use of CDH modified electrodes working by MET for biofuel cell applications results in a less positive onset of the electrocatalytic current (which may lead to an increased cell voltage), higher current and power density, and much better long-term stability over a broad range of pH.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19256522</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.</ArticleTitle>
<Pagination>
<MedlinePgn>2791-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ac900225z</ELocationID>
<Abstract>
<AbstractText>Direct and mediated electron transfer (DET and MET) between the enzyme and electrodes were compared for cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete sordida (PsCDH). For DET, PsCDH was adsorbed at pyrolytic graphite (PG) electrodes while for MET the enzyme was covalently linked to a low potential Os redox polymer. Both types of electrodes were prepared in the presence of single walled carbon nanotubes (SWCNTs). DET requires the oxidation of the heme domain, while MET occurs partially via the heme and the flavin domain at pH 3.5. At pH 6 MET occurs solely via the flavin domain. Most probably, the interaction of the domains decreases from pH 3.5 to 6.0 due to electrostatic repulsion of deprotonated amino acid residues, covering the surfaces of both domains. MET starts at a lower potential than DET. The midpoint potentials at pH 3.5 for the flavin (40 mV) and the heme domain (170 mV) were determined with spectroelectrochemistry. The electrochemical and spectroelectrochemical measurements presented in this work are in conformity. The pH dependency of DET and MET was investigated for PsCDH. The optimum was observed between pH 4 and 4.5 pH for DET and in the range of pH 5-6 for MET. The current densities obtained by MET are 1 order of magnitude higher than by DET. During multicycle cyclic voltammetry experiments carried out at different pHs, the PsCDH modified electrode working by MET turned out to be very stable. In order to characterize a PsCDH modified anode working by MET with respect to biofuel cell applications, this electrode was combined with a Pt-black cathode as model for a membraneless biofuel cell. In comparison to DET, a 10 times higher maximum current and maximum power density in a biofuel cell application could be achieved by MET. While CDH modified electrodes working by DET are highly qualified for applications in amperometric biosensors, a much better performance as biofuel cell anodes can be obtained by MET. The use of CDH modified electrodes working by MET for biofuel cell applications results in a less positive onset of the electrocatalytic current (which may lead to an increased cell voltage), higher current and power density, and much better long-term stability over a broad range of pH.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tasca</LastName>
<ForeName>Federico</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gorton</LastName>
<ForeName>Lo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harreither</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haltrich</LastName>
<ForeName>Dietmar</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ludwig</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nöll</LastName>
<ForeName>Gilbert</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005415">Flavins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001674" MajorTopicYN="N">Bioelectric Energy Sources</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004563" MajorTopicYN="N">Electrochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005415" MajorTopicYN="N">Flavins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="N">Spectrum Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19256522</ArticleId>
<ArticleId IdType="doi">10.1021/ac900225z</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000638 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000638 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19256522
   |texte=   Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19256522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020