Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.

Identifieur interne : 000033 ( Main/Corpus ); précédent : 000032; suivant : 000034

Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.

Auteurs : Ningqin Lu ; Tianjue Hu ; Yunbo Zhai ; Huaqing Qin ; Jamila Aliyeva ; Hao Zhang

Source :

RBID : pubmed:31901626

English descriptors

Abstract

White-rot fungi show low-cost superiority as a promising biosorbent in heavy metal removal, but limited by its poor biosorption capacity. Herein, a novel biosorbent, functionalized Phanerochaete chrysosporium with intracellular mineral scaffold, was prepared for the biosorption of heavy metal ions. The functionalized fungi cells with intracellular mineral scaffold that serve as internal metal container exhibiting high biosorption efficiency for Pb(II) and Cd(II) ions. Adsorption isotherm models were employed to investigate the biosorption isotherm and determine the biosorption equilibrium. The Freundlich model shows better fit with the experimental data of both metal ions (R2 = 0.9866 and 0.9897 for Pb(II) and Cd(II) respectively). Three kinetic models, pseudo-first-order, pseudo-second-order and intra-particle diffusion models, were used to determine the biosorption kinetics. The pseudo-second-order model shows the better fit with the experimental data, and we suggests the rate-limiting step of the biosorption could be a chemisorption step which involves sharing or exchanging of electrons between adsorbent and adsorbate. Intra-particle diffusion model study result shows the biosorption process could be divided into three steps: a fast surface adsorption stage, a slow transfer stage from external to internal, and a stage of andante reaching equilibrium. The biosorption mechanism was carefully analyzed by various characterization methods.

DOI: 10.1016/j.envres.2019.109061
PubMed: 31901626

Links to Exploration step

pubmed:31901626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.</title>
<author>
<name sortKey="Lu, Ningqin" sort="Lu, Ningqin" uniqKey="Lu N" first="Ningqin" last="Lu">Ningqin Lu</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Tianjue" sort="Hu, Tianjue" uniqKey="Hu T" first="Tianjue" last="Hu">Tianjue Hu</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: htjue66@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhai, Yunbo" sort="Zhai, Yunbo" uniqKey="Zhai Y" first="Yunbo" last="Zhai">Yunbo Zhai</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: ybzhai@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Huaqing" sort="Qin, Huaqing" uniqKey="Qin H" first="Huaqing" last="Qin">Huaqing Qin</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aliyeva, Jamila" sort="Aliyeva, Jamila" uniqKey="Aliyeva J" first="Jamila" last="Aliyeva">Jamila Aliyeva</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hao" sort="Zhang, Hao" uniqKey="Zhang H" first="Hao" last="Zhang">Hao Zhang</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31901626</idno>
<idno type="pmid">31901626</idno>
<idno type="doi">10.1016/j.envres.2019.109061</idno>
<idno type="wicri:Area/Main/Corpus">000033</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000033</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.</title>
<author>
<name sortKey="Lu, Ningqin" sort="Lu, Ningqin" uniqKey="Lu N" first="Ningqin" last="Lu">Ningqin Lu</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Tianjue" sort="Hu, Tianjue" uniqKey="Hu T" first="Tianjue" last="Hu">Tianjue Hu</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: htjue66@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhai, Yunbo" sort="Zhai, Yunbo" uniqKey="Zhai Y" first="Yunbo" last="Zhai">Yunbo Zhai</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: ybzhai@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Huaqing" sort="Qin, Huaqing" uniqKey="Qin H" first="Huaqing" last="Qin">Huaqing Qin</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aliyeva, Jamila" sort="Aliyeva, Jamila" uniqKey="Aliyeva J" first="Jamila" last="Aliyeva">Jamila Aliyeva</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hao" sort="Zhang, Hao" uniqKey="Zhang H" first="Hao" last="Zhang">Hao Zhang</name>
<affiliation>
<nlm:affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental research</title>
<idno type="eISSN">1096-0953</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption (MeSH)</term>
<term>Cadmium (MeSH)</term>
<term>Fungi (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Metals, Heavy (chemistry)</term>
<term>Thermodynamics (MeSH)</term>
<term>Water Pollutants, Chemical (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Metals, Heavy</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cadmium</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Fungi</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">White-rot fungi show low-cost superiority as a promising biosorbent in heavy metal removal, but limited by its poor biosorption capacity. Herein, a novel biosorbent, functionalized Phanerochaete chrysosporium with intracellular mineral scaffold, was prepared for the biosorption of heavy metal ions. The functionalized fungi cells with intracellular mineral scaffold that serve as internal metal container exhibiting high biosorption efficiency for Pb(II) and Cd(II) ions. Adsorption isotherm models were employed to investigate the biosorption isotherm and determine the biosorption equilibrium. The Freundlich model shows better fit with the experimental data of both metal ions (R
<sup>2</sup>
 = 0.9866 and 0.9897 for Pb(II) and Cd(II) respectively). Three kinetic models, pseudo-first-order, pseudo-second-order and intra-particle diffusion models, were used to determine the biosorption kinetics. The pseudo-second-order model shows the better fit with the experimental data, and we suggests the rate-limiting step of the biosorption could be a chemisorption step which involves sharing or exchanging of electrons between adsorbent and adsorbate. Intra-particle diffusion model study result shows the biosorption process could be divided into three steps: a fast surface adsorption stage, a slow transfer stage from external to internal, and a stage of andante reaching equilibrium. The biosorption mechanism was carefully analyzed by various characterization methods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31901626</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0953</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>182</Volume>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Environmental research</Title>
<ISOAbbreviation>Environ Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>109061</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0013-9351(19)30858-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.envres.2019.109061</ELocationID>
<Abstract>
<AbstractText>White-rot fungi show low-cost superiority as a promising biosorbent in heavy metal removal, but limited by its poor biosorption capacity. Herein, a novel biosorbent, functionalized Phanerochaete chrysosporium with intracellular mineral scaffold, was prepared for the biosorption of heavy metal ions. The functionalized fungi cells with intracellular mineral scaffold that serve as internal metal container exhibiting high biosorption efficiency for Pb(II) and Cd(II) ions. Adsorption isotherm models were employed to investigate the biosorption isotherm and determine the biosorption equilibrium. The Freundlich model shows better fit with the experimental data of both metal ions (R
<sup>2</sup>
 = 0.9866 and 0.9897 for Pb(II) and Cd(II) respectively). Three kinetic models, pseudo-first-order, pseudo-second-order and intra-particle diffusion models, were used to determine the biosorption kinetics. The pseudo-second-order model shows the better fit with the experimental data, and we suggests the rate-limiting step of the biosorption could be a chemisorption step which involves sharing or exchanging of electrons between adsorbent and adsorbate. Intra-particle diffusion model study result shows the biosorption process could be divided into three steps: a fast surface adsorption stage, a slow transfer stage from external to internal, and a stage of andante reaching equilibrium. The biosorption mechanism was carefully analyzed by various characterization methods.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Ningqin</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Tianjue</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: htjue66@hnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhai</LastName>
<ForeName>Yunbo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China. Electronic address: ybzhai@hnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Huaqing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aliyeva</LastName>
<ForeName>Jamila</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Res</MedlineTA>
<NlmUniqueID>0147621</NlmUniqueID>
<ISSNLinking>0013-9351</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="Y">Fungi</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="Y">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="Y">Water Pollutants, Chemical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biosorption</Keyword>
<Keyword MajorTopicYN="Y">Calcium carbonate</Keyword>
<Keyword MajorTopicYN="Y">Calcium oxalate</Keyword>
<Keyword MajorTopicYN="Y">Heavy metals</Keyword>
<Keyword MajorTopicYN="Y">Phanerochaete chrysosporium</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31901626</ArticleId>
<ArticleId IdType="pii">S0013-9351(19)30858-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.envres.2019.109061</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000033 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000033 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31901626
   |texte=   Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31901626" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020