Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.

Identifieur interne : 000401 ( PubMed/Curation ); précédent : 000400; suivant : 000402

Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.

Auteurs : Ana Rodríguez [Espagne] ; Takehiko Shimada ; Magdalena Cervera ; Berta Alquézar ; José Gadea ; Aurelio G Mez-Cadenas ; Carlos José De Ollas ; María Jesús Rodrigo ; Lorenzo Zacarías ; Leandro Pe A

Source :

RBID : pubmed:24192451

English descriptors

Abstract

Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores.

DOI: 10.1104/pp.113.224279
PubMed: 24192451

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24192451

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.</title>
<author>
<name sortKey="Rodriguez, Ana" sort="Rodriguez, Ana" uniqKey="Rodriguez A" first="Ana" last="Rodríguez">Ana Rodríguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, 46113 Moncada, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, 46113 Moncada, Valencia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shimada, Takehiko" sort="Shimada, Takehiko" uniqKey="Shimada T" first="Takehiko" last="Shimada">Takehiko Shimada</name>
</author>
<author>
<name sortKey="Cervera, Magdalena" sort="Cervera, Magdalena" uniqKey="Cervera M" first="Magdalena" last="Cervera">Magdalena Cervera</name>
</author>
<author>
<name sortKey="Alquezar, Berta" sort="Alquezar, Berta" uniqKey="Alquezar B" first="Berta" last="Alquézar">Berta Alquézar</name>
</author>
<author>
<name sortKey="Gadea, Jose" sort="Gadea, Jose" uniqKey="Gadea J" first="José" last="Gadea">José Gadea</name>
</author>
<author>
<name sortKey="G Mez Cadenas, Aurelio" sort="G Mez Cadenas, Aurelio" uniqKey="G Mez Cadenas A" first="Aurelio" last="G Mez-Cadenas">Aurelio G Mez-Cadenas</name>
</author>
<author>
<name sortKey="De Ollas, Carlos Jose" sort="De Ollas, Carlos Jose" uniqKey="De Ollas C" first="Carlos José" last="De Ollas">Carlos José De Ollas</name>
</author>
<author>
<name sortKey="Rodrigo, Maria Jesus" sort="Rodrigo, Maria Jesus" uniqKey="Rodrigo M" first="María Jesús" last="Rodrigo">María Jesús Rodrigo</name>
</author>
<author>
<name sortKey="Zacarias, Lorenzo" sort="Zacarias, Lorenzo" uniqKey="Zacarias L" first="Lorenzo" last="Zacarías">Lorenzo Zacarías</name>
</author>
<author>
<name sortKey="Pe A, Leandro" sort="Pe A, Leandro" uniqKey="Pe A L" first="Leandro" last="Pe A">Leandro Pe A</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24192451</idno>
<idno type="pmid">24192451</idno>
<idno type="doi">10.1104/pp.113.224279</idno>
<idno type="wicri:Area/PubMed/Corpus">000401</idno>
<idno type="wicri:Area/PubMed/Curation">000401</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.</title>
<author>
<name sortKey="Rodriguez, Ana" sort="Rodriguez, Ana" uniqKey="Rodriguez A" first="Ana" last="Rodríguez">Ana Rodríguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, 46113 Moncada, Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, 46113 Moncada, Valencia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shimada, Takehiko" sort="Shimada, Takehiko" uniqKey="Shimada T" first="Takehiko" last="Shimada">Takehiko Shimada</name>
</author>
<author>
<name sortKey="Cervera, Magdalena" sort="Cervera, Magdalena" uniqKey="Cervera M" first="Magdalena" last="Cervera">Magdalena Cervera</name>
</author>
<author>
<name sortKey="Alquezar, Berta" sort="Alquezar, Berta" uniqKey="Alquezar B" first="Berta" last="Alquézar">Berta Alquézar</name>
</author>
<author>
<name sortKey="Gadea, Jose" sort="Gadea, Jose" uniqKey="Gadea J" first="José" last="Gadea">José Gadea</name>
</author>
<author>
<name sortKey="G Mez Cadenas, Aurelio" sort="G Mez Cadenas, Aurelio" uniqKey="G Mez Cadenas A" first="Aurelio" last="G Mez-Cadenas">Aurelio G Mez-Cadenas</name>
</author>
<author>
<name sortKey="De Ollas, Carlos Jose" sort="De Ollas, Carlos Jose" uniqKey="De Ollas C" first="Carlos José" last="De Ollas">Carlos José De Ollas</name>
</author>
<author>
<name sortKey="Rodrigo, Maria Jesus" sort="Rodrigo, Maria Jesus" uniqKey="Rodrigo M" first="María Jesús" last="Rodrigo">María Jesús Rodrigo</name>
</author>
<author>
<name sortKey="Zacarias, Lorenzo" sort="Zacarias, Lorenzo" uniqKey="Zacarias L" first="Lorenzo" last="Zacarías">Lorenzo Zacarías</name>
</author>
<author>
<name sortKey="Pe A, Leandro" sort="Pe A, Leandro" uniqKey="Pe A L" first="Leandro" last="Pe A">Leandro Pe A</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (immunology)</term>
<term>Citrus sinensis (microbiology)</term>
<term>Cyclohexenes (metabolism)</term>
<term>Cyclohexenes (pharmacology)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Cyclopentanes (pharmacology)</term>
<term>Down-Regulation</term>
<term>Farnesyltranstransferase (genetics)</term>
<term>Farnesyltranstransferase (metabolism)</term>
<term>Fruit (drug effects)</term>
<term>Fruit (genetics)</term>
<term>Fruit (metabolism)</term>
<term>Fruit (microbiology)</term>
<term>Gene Expression Regulation, Plant</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Immunity, Innate (genetics)</term>
<term>Intramolecular Lyases (genetics)</term>
<term>Intramolecular Lyases (metabolism)</term>
<term>Oxylipins (metabolism)</term>
<term>Oxylipins (pharmacology)</term>
<term>Penicillium (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants, Genetically Modified</term>
<term>Signal Transduction (genetics)</term>
<term>Terpenes (metabolism)</term>
<term>Terpenes (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Farnesyltranstransferase</term>
<term>Intramolecular Lyases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclohexenes</term>
<term>Cyclopentanes</term>
<term>Farnesyltranstransferase</term>
<term>Intramolecular Lyases</term>
<term>Oxylipins</term>
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Fruit</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
<term>Fruit</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Citrus sinensis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fruit</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Fruit</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Penicillium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cyclohexenes</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
<term>Terpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Down-Regulation</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24192451</PMID>
<DateCreated>
<Year>2014</Year>
<Month>1</Month>
<Day>8</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>164</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.</ArticleTitle>
<Pagination>
<MedlinePgn>321-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.224279</ELocationID>
<Abstract>
<AbstractText>Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodríguez</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, 46113 Moncada, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shimada</LastName>
<ForeName>Takehiko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cervera</LastName>
<ForeName>Magdalena</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alquézar</LastName>
<ForeName>Berta</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gadea</LastName>
<ForeName>José</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gómez-Cadenas</LastName>
<ForeName>Aurelio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Ollas</LastName>
<ForeName>Carlos José</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodrigo</LastName>
<ForeName>María Jesús</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zacarías</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peña</LastName>
<ForeName>Leandro</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>Nov</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053138">Cyclohexenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9MC3I34447</RegistryNumber>
<NameOfSubstance UI="C008281">limonene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.29</RegistryNumber>
<NameOfSubstance UI="D051231">Farnesyltranstransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.5.-</RegistryNumber>
<NameOfSubstance UI="D019753">Intramolecular Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.5.-</RegistryNumber>
<NameOfSubstance UI="C040265">pinene cyclase I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Mar;17(3):971-86</RefSource>
<PMID Version="1">15722469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2005 Feb;57(3):375-91</RefSource>
<PMID Version="1">15830128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2005 Jun;221(3):361-73</RefSource>
<PMID Version="1">15654638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phytopathol. 2005;43:205-27</RefSource>
<PMID Version="1">16078883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2005 Sep;18(9):923-37</RefSource>
<PMID Version="1">16167763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Sep 23;309(5743):2070-2</RefSource>
<PMID Version="1">16179482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2005 Nov 2;53(22):8437-42</RefSource>
<PMID Version="1">16248534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Jan;140(1):249-62</RefSource>
<PMID Version="1">16377744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1129-34</RefSource>
<PMID Version="1">16418295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Feb 10;311(5762):815-9</RefSource>
<PMID Version="1">16469919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Feb 24;124(4):783-801</RefSource>
<PMID Version="1">16497588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2006 Mar;45(6):982-93</RefSource>
<PMID Version="1">16507088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</RefSource>
<PMID Version="1">16759898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2006 Nov;24(11):1441-7</RefSource>
<PMID Version="1">17057703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Mar;49(6):972-80</RefSource>
<PMID Version="1">17257167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Jul;19(7):2213-24</RefSource>
<PMID Version="1">17630279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2007 Oct;100(4):681-97</RefSource>
<PMID Version="1">17513307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Mar;146(3):974-86</RefSource>
<PMID Version="1">17965175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Mar;146(3):832-8</RefSource>
<PMID Version="1">18316637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2008;9:44</RefSource>
<PMID Version="1">18221561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2008 Apr;54(1):81-92</RefSource>
<PMID Version="1">18088307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2008;9:318</RefSource>
<PMID Version="1">18598343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2008 Jul;20(7):1984-2000</RefSource>
<PMID Version="1">18641266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Aug 29;321(5893):1200-2</RefSource>
<PMID Version="1">18755975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2008 Nov;46(11):941-50</RefSource>
<PMID Version="1">18674922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009;183(1):62-75</RefSource>
<PMID Version="1">19402879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2009 Aug;150(4):1638-47</RefSource>
<PMID Version="1">19561123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Jan;152(1):96-106</RefSource>
<PMID Version="1">19897603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Chem Biol. 2010 Jan 15;5(1):63-77</RefSource>
<PMID Version="1">20025249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Mar 18;464(7287):418-22</RefSource>
<PMID Version="1">20164835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2010 May;105(5):777-82</RefSource>
<PMID Version="1">20228087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2010 May;13(5):643-56</RefSource>
<PMID Version="1">20337694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W210-3</RefSource>
<PMID Version="1">20478823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14668-72</RefSource>
<PMID Version="1">20679219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2010 Sep;61(14):3847-64</RefSource>
<PMID Version="1">20732878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2010 Nov 1;167(16):1342-50</RefSource>
<PMID Version="1">20630614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2011 Apr;23(4):1639-53</RefSource>
<PMID Version="1">21498677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2011 Jun;156(2):793-802</RefSource>
<PMID Version="1">21525333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Pathol. 2011 Dec;12(9):879-97</RefSource>
<PMID Version="1">21726388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2011 Nov;6(11):1820-3</RefSource>
<PMID Version="1">22212123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2012 Mar;25(3):431-9</RefSource>
<PMID Version="1">22112217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 May;159(1):81-94</RefSource>
<PMID Version="1">22452856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2012 Jun;17(6):349-59</RefSource>
<PMID Version="1">22459758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 Jul;71(1):161-72</RefSource>
<PMID Version="1">22385469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 Aug;159(4):1591-607</RefSource>
<PMID Version="1">22715110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Jan;197(1):36-48</RefSource>
<PMID Version="1">23127167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2013 Jun;111(6):1021-58</RefSource>
<PMID Version="1">23558912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2005 Dec;10(12):594-602</RefSource>
<PMID Version="1">16290212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Oct;124(2):665-80</RefSource>
<PMID Version="1">11027716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2001 Jan;52(354):11-23</RefSource>
<PMID Version="1">11181709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</RefSource>
<PMID Version="1">11309499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2001 May;13(5):1025-33</RefSource>
<PMID Version="1">11340179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Jun 22;276(25):22901-9</RefSource>
<PMID Version="1">11264287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12837-42</RefSource>
<PMID Version="1">11592974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Feb 15;30(4):e15</RefSource>
<PMID Version="1">11842121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Feb 28;415(6875):977-83</RefSource>
<PMID Version="1">11875555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2002 Mar;14(3):559-74</RefSource>
<PMID Version="1">11910004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2002 Jun;5(3):237-43</RefSource>
<PMID Version="1">11960742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2002;14 Suppl:S153-64</RefSource>
<PMID Version="1">12045275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2002 Jul;31(1):1-12</RefSource>
<PMID Version="1">12100478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2002 Jul;14(7):1557-66</RefSource>
<PMID Version="1">12119374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2001 May 1;29(9):e45</RefSource>
<PMID Version="1">11328886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2003 Feb;54(383):727-38</RefSource>
<PMID Version="1">12554716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Biotechnol. 2003 Apr;14(2):169-76</RefSource>
<PMID Version="1">12732318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2003 Dec;15(12):2866-84</RefSource>
<PMID Version="1">14630967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2004 Jul;16(7):1938-50</RefSource>
<PMID Version="1">15208388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Jul 30;305(5684):665-8</RefSource>
<PMID Version="1">15232071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Peptides. 2004 Aug;25(8):1235-42</RefSource>
<PMID Version="1">15350690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2004 Nov 3;52(22):6724-31</RefSource>
<PMID Version="1">15506808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1994 May;105(1):35-45</RefSource>
<PMID Version="1">8029357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 1996 Nov;8(11):2067-77</RefSource>
<PMID Version="1">8953771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1998 May 15;280(5366):1091-4</RefSource>
<PMID Version="1">9582125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 1998 Oct;1(5):404-11</RefSource>
<PMID Version="1">10066616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2004 Dec;16(12):3460-79</RefSource>
<PMID Version="1">15548743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2005 Feb;10(2):57-62</RefSource>
<PMID Version="1">15708342</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053138" MajorTopicYN="N">Cyclohexenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051231" MajorTopicYN="N">Farnesyltranstransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019753" MajorTopicYN="N">Intramolecular Lyases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010407" MajorTopicYN="N">Penicillium</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3875811</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24192451</ArticleId>
<ArticleId IdType="pii">pp.113.224279</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.224279</ArticleId>
<ArticleId IdType="pmc">PMC3875811</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000401 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000401 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24192451
   |texte=   Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24192451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024