Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.

Identifieur interne : 000414 ( PubMed/Corpus ); précédent : 000413; suivant : 000415

The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.

Auteurs : Ivana Kraiselburd ; Lucas D. Daurelio ; María Laura Tondo ; Paz Merelo ; Adriana A. Cortadi ; Manuel Tal N ; Francisco R. Tadeo ; Elena G. Orellano

Source :

RBID : pubmed:24260514

English descriptors

Abstract

Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.

DOI: 10.1371/journal.pone.0080930
PubMed: 24260514

Links to Exploration step

pubmed:24260514

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.</title>
<author>
<name sortKey="Kraiselburd, Ivana" sort="Kraiselburd, Ivana" uniqKey="Kraiselburd I" first="Ivana" last="Kraiselburd">Ivana Kraiselburd</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daurelio, Lucas D" sort="Daurelio, Lucas D" uniqKey="Daurelio L" first="Lucas D" last="Daurelio">Lucas D. Daurelio</name>
</author>
<author>
<name sortKey="Tondo, Maria Laura" sort="Tondo, Maria Laura" uniqKey="Tondo M" first="María Laura" last="Tondo">María Laura Tondo</name>
</author>
<author>
<name sortKey="Merelo, Paz" sort="Merelo, Paz" uniqKey="Merelo P" first="Paz" last="Merelo">Paz Merelo</name>
</author>
<author>
<name sortKey="Cortadi, Adriana A" sort="Cortadi, Adriana A" uniqKey="Cortadi A" first="Adriana A" last="Cortadi">Adriana A. Cortadi</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
<author>
<name sortKey="Tadeo, Francisco R" sort="Tadeo, Francisco R" uniqKey="Tadeo F" first="Francisco R" last="Tadeo">Francisco R. Tadeo</name>
</author>
<author>
<name sortKey="Orellano, Elena G" sort="Orellano, Elena G" uniqKey="Orellano E" first="Elena G" last="Orellano">Elena G. Orellano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24260514</idno>
<idno type="pmid">24260514</idno>
<idno type="doi">10.1371/journal.pone.0080930</idno>
<idno type="wicri:Area/PubMed/Corpus">000414</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.</title>
<author>
<name sortKey="Kraiselburd, Ivana" sort="Kraiselburd, Ivana" uniqKey="Kraiselburd I" first="Ivana" last="Kraiselburd">Ivana Kraiselburd</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Daurelio, Lucas D" sort="Daurelio, Lucas D" uniqKey="Daurelio L" first="Lucas D" last="Daurelio">Lucas D. Daurelio</name>
</author>
<author>
<name sortKey="Tondo, Maria Laura" sort="Tondo, Maria Laura" uniqKey="Tondo M" first="María Laura" last="Tondo">María Laura Tondo</name>
</author>
<author>
<name sortKey="Merelo, Paz" sort="Merelo, Paz" uniqKey="Merelo P" first="Paz" last="Merelo">Paz Merelo</name>
</author>
<author>
<name sortKey="Cortadi, Adriana A" sort="Cortadi, Adriana A" uniqKey="Cortadi A" first="Adriana A" last="Cortadi">Adriana A. Cortadi</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
<author>
<name sortKey="Tadeo, Francisco R" sort="Tadeo, Francisco R" uniqKey="Tadeo F" first="Francisco R" last="Tadeo">Francisco R. Tadeo</name>
</author>
<author>
<name sortKey="Orellano, Elena G" sort="Orellano, Elena G" uniqKey="Orellano E" first="Elena G" last="Orellano">Elena G. Orellano</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (immunology)</term>
<term>Citrus sinensis (microbiology)</term>
<term>Gene Deletion</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Immune Evasion</term>
<term>Light</term>
<term>Photoreceptors, Microbial (genetics)</term>
<term>Photoreceptors, Microbial (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (immunology)</term>
<term>Protein Structure, Tertiary</term>
<term>Virulence</term>
<term>Xanthomonas (genetics)</term>
<term>Xanthomonas (pathogenicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Photoreceptors, Microbial</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Photoreceptors, Microbial</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plant Diseases</term>
<term>Plant Immunity</term>
<term>Xanthomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Xanthomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Immune Evasion</term>
<term>Light</term>
<term>Protein Structure, Tertiary</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24260514</PMID>
<DateCreated>
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.</ArticleTitle>
<Pagination>
<MedlinePgn>e80930</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0080930</ELocationID>
<Abstract>
<AbstractText>Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kraiselburd</LastName>
<ForeName>Ivana</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Daurelio</LastName>
<ForeName>Lucas D</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tondo</LastName>
<ForeName>María Laura</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merelo</LastName>
<ForeName>Paz</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cortadi</LastName>
<ForeName>Adriana A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Talón</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tadeo</LastName>
<ForeName>Francisco R</ForeName>
<Initials>FR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Orellano</LastName>
<ForeName>Elena G</ForeName>
<Initials>EG</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>Nov</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020283">Photoreceptors, Microbial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(4):797-806</RefSource>
<PMID Version="1">17138624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2006 Dec;225(1):1-12</RefSource>
<PMID Version="1">16807755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18241-6</RefSource>
<PMID Version="1">17986614</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2008;59:89-113</RefSource>
<PMID Version="1">18444897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2008 Jul;69(1):119-36</RefSource>
<PMID Version="1">18452583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2008;9:318</RefSource>
<PMID Version="1">18598343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18631-6</RefSource>
<PMID Version="1">19015524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2009 May;22(5):487-97</RefSource>
<PMID Version="1">19348567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 May 12;106(19):8061-6</RefSource>
<PMID Version="1">19416911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2009 Oct 14;17(10):1282-94</RefSource>
<PMID Version="1">19836329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2009 Dec;191(23):7234-42</RefSource>
<PMID Version="1">19783626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photosynth Res. 2010 Apr;104(1):41-8</RefSource>
<PMID Version="1">20012201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</RefSource>
<PMID Version="1">20435677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2010 Sep;3(5):927-39</RefSource>
<PMID Version="1">20729473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2010 Dec;192(24):6336-45</RefSource>
<PMID Version="1">20889755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photochem Photobiol. 2011 May-Jun;87(3):491-510</RefSource>
<PMID Version="1">21352235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Microbiol. 2011 Sep;19(9):441-8</RefSource>
<PMID Version="1">21664820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2011 Nov;62(15):5607-21</RefSource>
<PMID Version="1">21862479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2012 Feb;35(2):441-53</RefSource>
<PMID Version="1">21752032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Sci. 2012 Apr;185-186:118-30</RefSource>
<PMID Version="1">22325873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Feb;63(4):1619-36</RefSource>
<PMID Version="1">22282535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(6):e38226</RefSource>
<PMID Version="1">22675525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(11):e49197</RefSource>
<PMID Version="1">23173047</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2013 Jul 1;170(10):934-42</RefSource>
<PMID Version="1">23453188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2005 Apr;46(4):579-87</RefSource>
<PMID Version="1">15695430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2000;132:365-86</RefSource>
<PMID Version="1">10547847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2000 Oct;44(3):321-34</RefSource>
<PMID Version="1">11199391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2001 Aug;57(7):1187-95</RefSource>
<PMID Version="1">11430991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods. 2001 Dec;25(4):402-8</RefSource>
<PMID Version="1">11846609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2002 Apr;32(4):790-2, 794-6</RefSource>
<PMID Version="1">11962601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 May 23;417(6887):459-63</RefSource>
<PMID Version="1">12024217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2003 Feb;15(2):317-30</RefSource>
<PMID Version="1">12566575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Jun;132(2):821-9</RefSource>
<PMID Version="1">12805612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2003 Sep;64(1):153-61</RefSource>
<PMID Version="1">12946414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2004 Jan;37(1):13-20</RefSource>
<PMID Version="1">14730990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2004 Mar;37(6):914-39</RefSource>
<PMID Version="1">14996223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2004 Feb;9(2):97-104</RefSource>
<PMID Version="1">15102376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 1986 May;6(5):1615-23</RefSource>
<PMID Version="1">3785174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):495-506</RefSource>
<PMID Version="1">8400378</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2005 Feb;57(3):375-91</RefSource>
<PMID Version="1">15830128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Feb 24;124(4):803-14</RefSource>
<PMID Version="1">16497589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2006;170(4):677-99</RefSource>
<PMID Version="1">16684231</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2006 Sep;188(17):6411-4</RefSource>
<PMID Version="1">16923909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phytopathol. 2006;44:135-62</RefSource>
<PMID Version="1">16602946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Aug 24;317(5841):1090-3</RefSource>
<PMID Version="1">17717187</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020283" MajorTopicYN="N">Photoreceptors, Microbial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014974" MajorTopicYN="N">Xanthomonas</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3829917</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>6</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24260514</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0080930</ArticleId>
<ArticleId IdType="pii">PONE-D-13-26521</ArticleId>
<ArticleId IdType="pmc">PMC3829917</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000414 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000414 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24260514
   |texte=   The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24260514" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024