Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.

Identifieur interne : 000877 ( PubMed/Checkpoint ); précédent : 000876; suivant : 000878

Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.

Auteurs : Mady Cisse [Sénégal] ; Fabrice Vaillant ; Oscar Acosta ; Claudie Dhuique-Mayer ; Manuel Dornier

Source :

RBID : pubmed:19545116

English descriptors

Abstract

Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.

DOI: 10.1021/jf900836b
PubMed: 19545116


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19545116

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.</title>
<author>
<name sortKey="Cisse, Mady" sort="Cisse, Mady" uniqKey="Cisse M" first="Mady" last="Cisse">Mady Cisse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar Fann, Senegal.</nlm:affiliation>
<country xml:lang="fr">Sénégal</country>
<wicri:regionArea>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar Fann</wicri:regionArea>
<wicri:noRegion>Dakar Fann</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaillant, Fabrice" sort="Vaillant, Fabrice" uniqKey="Vaillant F" first="Fabrice" last="Vaillant">Fabrice Vaillant</name>
</author>
<author>
<name sortKey="Acosta, Oscar" sort="Acosta, Oscar" uniqKey="Acosta O" first="Oscar" last="Acosta">Oscar Acosta</name>
</author>
<author>
<name sortKey="Dhuique Mayer, Claudie" sort="Dhuique Mayer, Claudie" uniqKey="Dhuique Mayer C" first="Claudie" last="Dhuique-Mayer">Claudie Dhuique-Mayer</name>
</author>
<author>
<name sortKey="Dornier, Manuel" sort="Dornier, Manuel" uniqKey="Dornier M" first="Manuel" last="Dornier">Manuel Dornier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19545116</idno>
<idno type="pmid">19545116</idno>
<idno type="doi">10.1021/jf900836b</idno>
<idno type="wicri:Area/PubMed/Corpus">000938</idno>
<idno type="wicri:Area/PubMed/Curation">000938</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000938</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.</title>
<author>
<name sortKey="Cisse, Mady" sort="Cisse, Mady" uniqKey="Cisse M" first="Mady" last="Cisse">Mady Cisse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar Fann, Senegal.</nlm:affiliation>
<country xml:lang="fr">Sénégal</country>
<wicri:regionArea>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar Fann</wicri:regionArea>
<wicri:noRegion>Dakar Fann</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaillant, Fabrice" sort="Vaillant, Fabrice" uniqKey="Vaillant F" first="Fabrice" last="Vaillant">Fabrice Vaillant</name>
</author>
<author>
<name sortKey="Acosta, Oscar" sort="Acosta, Oscar" uniqKey="Acosta O" first="Oscar" last="Acosta">Oscar Acosta</name>
</author>
<author>
<name sortKey="Dhuique Mayer, Claudie" sort="Dhuique Mayer, Claudie" uniqKey="Dhuique Mayer C" first="Claudie" last="Dhuique-Mayer">Claudie Dhuique-Mayer</name>
</author>
<author>
<name sortKey="Dornier, Manuel" sort="Dornier, Manuel" uniqKey="Dornier M" first="Manuel" last="Dornier">Manuel Dornier</name>
</author>
</analytic>
<series>
<title level="j">Journal of agricultural and food chemistry</title>
<idno type="eISSN">1520-5118</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthocyanins (chemistry)</term>
<term>Beverages (analysis)</term>
<term>Citrus (chemistry)</term>
<term>Drug Stability</term>
<term>Fruit (chemistry)</term>
<term>Hibiscus (chemistry)</term>
<term>Hot Temperature</term>
<term>Kinetics</term>
<term>Models, Theoretical</term>
<term>Oxygen (analysis)</term>
<term>Rosaceae (chemistry)</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anthocyanins</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Beverages</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Citrus</term>
<term>Fruit</term>
<term>Hibiscus</term>
<term>Rosaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Stability</term>
<term>Hot Temperature</term>
<term>Kinetics</term>
<term>Models, Theoretical</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19545116</PMID>
<DateCreated>
<Year>2009</Year>
<Month>7</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-5118</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Journal of agricultural and food chemistry</Title>
<ISOAbbreviation>J. Agric. Food Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.</ArticleTitle>
<Pagination>
<MedlinePgn>6285-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jf900836b</ELocationID>
<Abstract>
<AbstractText>Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cisse</LastName>
<ForeName>Mady</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP 5085, Dakar Fann, Senegal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vaillant</LastName>
<ForeName>Fabrice</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Acosta</LastName>
<ForeName>Oscar</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dhuique-Mayer</LastName>
<ForeName>Claudie</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dornier</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Agric Food Chem</MedlineTA>
<NlmUniqueID>0374755</NlmUniqueID>
<ISSNLinking>0021-8561</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001628" MajorTopicYN="N">Beverages</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004355" MajorTopicYN="N">Drug Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031584" MajorTopicYN="N">Hibiscus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="Y">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027824" MajorTopicYN="N">Rosaceae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19545116</ArticleId>
<ArticleId IdType="doi">10.1021/jf900836b</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Sénégal</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Acosta, Oscar" sort="Acosta, Oscar" uniqKey="Acosta O" first="Oscar" last="Acosta">Oscar Acosta</name>
<name sortKey="Dhuique Mayer, Claudie" sort="Dhuique Mayer, Claudie" uniqKey="Dhuique Mayer C" first="Claudie" last="Dhuique-Mayer">Claudie Dhuique-Mayer</name>
<name sortKey="Dornier, Manuel" sort="Dornier, Manuel" uniqKey="Dornier M" first="Manuel" last="Dornier">Manuel Dornier</name>
<name sortKey="Vaillant, Fabrice" sort="Vaillant, Fabrice" uniqKey="Vaillant F" first="Fabrice" last="Vaillant">Fabrice Vaillant</name>
</noCountry>
<country name="Sénégal">
<noRegion>
<name sortKey="Cisse, Mady" sort="Cisse, Mady" uniqKey="Cisse M" first="Mady" last="Cisse">Mady Cisse</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000877 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000877 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19545116
   |texte=   Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19545116" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024