Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000724 ( Pmc/Corpus ); précédent : 0007239; suivant : 0007250 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">“TRP inflammation” relationship in cardiovascular system</title>
<author>
<name sortKey="Numata, Tomohiro" sort="Numata, Tomohiro" uniqKey="Numata T" first="Tomohiro" last="Numata">Tomohiro Numata</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takahashi, Kiriko" sort="Takahashi, Kiriko" uniqKey="Takahashi K" first="Kiriko" last="Takahashi">Kiriko Takahashi</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Ryuji" sort="Inoue, Ryuji" uniqKey="Inoue R" first="Ryuji" last="Inoue">Ryuji Inoue</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26482920</idno>
<idno type="pmc">4851701</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851701</idno>
<idno type="RBID">PMC:4851701</idno>
<idno type="doi">10.1007/s00281-015-0536-y</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000724</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">“TRP inflammation” relationship in cardiovascular system</title>
<author>
<name sortKey="Numata, Tomohiro" sort="Numata, Tomohiro" uniqKey="Numata T" first="Tomohiro" last="Numata">Tomohiro Numata</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takahashi, Kiriko" sort="Takahashi, Kiriko" uniqKey="Takahashi K" first="Kiriko" last="Takahashi">Kiriko Takahashi</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Ryuji" sort="Inoue, Ryuji" uniqKey="Inoue R" first="Ryuji" last="Inoue">Ryuji Inoue</name>
<affiliation>
<nlm:aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Seminars in Immunopathology</title>
<idno type="ISSN">1863-2297</idno>
<idno type="eISSN">1863-2300</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Tousoulis, D" uniqKey="Tousoulis D">D Tousoulis</name>
</author>
<author>
<name sortKey="Psarros, C" uniqKey="Psarros C">C Psarros</name>
</author>
<author>
<name sortKey="Demosthenous, M" uniqKey="Demosthenous M">M Demosthenous</name>
</author>
<author>
<name sortKey="Patel, R" uniqKey="Patel R">R Patel</name>
</author>
<author>
<name sortKey="Antoniades, C" uniqKey="Antoniades C">C Antoniades</name>
</author>
<author>
<name sortKey="Stefanadis, C" uniqKey="Stefanadis C">C Stefanadis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Virdis, A" uniqKey="Virdis A">A Virdis</name>
</author>
<author>
<name sortKey="Schiffrin, El" uniqKey="Schiffrin E">EL Schiffrin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Golia, E" uniqKey="Golia E">E Golia</name>
</author>
<author>
<name sortKey="Limongelli, G" uniqKey="Limongelli G">G Limongelli</name>
</author>
<author>
<name sortKey="Natale, F" uniqKey="Natale F">F Natale</name>
</author>
<author>
<name sortKey="Fimiani, F" uniqKey="Fimiani F">F Fimiani</name>
</author>
<author>
<name sortKey="Maddaloni, V" uniqKey="Maddaloni V">V Maddaloni</name>
</author>
<author>
<name sortKey="Pariggiano, I" uniqKey="Pariggiano I">I Pariggiano</name>
</author>
<author>
<name sortKey="Bianchi, R" uniqKey="Bianchi R">R Bianchi</name>
</author>
<author>
<name sortKey="Crisci, M" uniqKey="Crisci M">M Crisci</name>
</author>
<author>
<name sortKey="D Cierno, L" uniqKey="D Cierno L">L D’Acierno</name>
</author>
<author>
<name sortKey="Giordano, R" uniqKey="Giordano R">R Giordano</name>
</author>
<author>
<name sortKey="Di Palma, G" uniqKey="Di Palma G">G Di Palma</name>
</author>
<author>
<name sortKey="Conte, M" uniqKey="Conte M">M Conte</name>
</author>
<author>
<name sortKey="Golino, P" uniqKey="Golino P">P Golino</name>
</author>
<author>
<name sortKey="Russo, Mg" uniqKey="Russo M">MG Russo</name>
</author>
<author>
<name sortKey="Calabro, R" uniqKey="Calabro R">R Calabro</name>
</author>
<author>
<name sortKey="Calabro, P" uniqKey="Calabro P">P Calabro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, R" uniqKey="Ross R">R Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, R" uniqKey="Ross R">R Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansson, Gk" uniqKey="Hansson G">GK Hansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masumoto, J" uniqKey="Masumoto J">J Masumoto</name>
</author>
<author>
<name sortKey="Taniguchi, S" uniqKey="Taniguchi S">S Taniguchi</name>
</author>
<author>
<name sortKey="Ayukawa, K" uniqKey="Ayukawa K">K Ayukawa</name>
</author>
<author>
<name sortKey="Sarvotham, H" uniqKey="Sarvotham H">H Sarvotham</name>
</author>
<author>
<name sortKey="Kishino, T" uniqKey="Kishino T">T Kishino</name>
</author>
<author>
<name sortKey="Niikawa, N" uniqKey="Niikawa N">N Niikawa</name>
</author>
<author>
<name sortKey="Hidaka, E" uniqKey="Hidaka E">E Hidaka</name>
</author>
<author>
<name sortKey="Katsuyama, T" uniqKey="Katsuyama T">T Katsuyama</name>
</author>
<author>
<name sortKey="Higuchi, T" uniqKey="Higuchi T">T Higuchi</name>
</author>
<author>
<name sortKey="Sagara, J" uniqKey="Sagara J">J Sagara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broderick, L" uniqKey="Broderick L">L Broderick</name>
</author>
<author>
<name sortKey="De Nardo, D" uniqKey="De Nardo D">D De Nardo</name>
</author>
<author>
<name sortKey="Franklin, Bs" uniqKey="Franklin B">BS Franklin</name>
</author>
<author>
<name sortKey="Hoffman, Hm" uniqKey="Hoffman H">HM Hoffman</name>
</author>
<author>
<name sortKey="Latz, E" uniqKey="Latz E">E Latz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y Yin</name>
</author>
<author>
<name sortKey="Pastrana, Jl" uniqKey="Pastrana J">JL Pastrana</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Mallilankaraman, K" uniqKey="Mallilankaraman K">K Mallilankaraman</name>
</author>
<author>
<name sortKey="Choi, Et" uniqKey="Choi E">ET Choi</name>
</author>
<author>
<name sortKey="Madesh, M" uniqKey="Madesh M">M Madesh</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Yang, Xf" uniqKey="Yang X">XF Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abais, Jm" uniqKey="Abais J">JM Abais</name>
</author>
<author>
<name sortKey="Xia, M" uniqKey="Xia M">M Xia</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Boini, Km" uniqKey="Boini K">KM Boini</name>
</author>
<author>
<name sortKey="Li, Pl" uniqKey="Li P">PL Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Latz, E" uniqKey="Latz E">E Latz</name>
</author>
<author>
<name sortKey="Xiao, Ts" uniqKey="Xiao T">TS Xiao</name>
</author>
<author>
<name sortKey="Stutz, A" uniqKey="Stutz A">A Stutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feske, S" uniqKey="Feske S">S Feske</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Jd" uniqKey="Jones J">JD Jones</name>
</author>
<author>
<name sortKey="Dangl, Jl" uniqKey="Dangl J">JL Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janeway, Ca" uniqKey="Janeway C">CA Janeway</name>
</author>
<author>
<name sortKey="Medzhitov, R" uniqKey="Medzhitov R">R Medzhitov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seong, Sy" uniqKey="Seong S">SY Seong</name>
</author>
<author>
<name sortKey="Matzinger, P" uniqKey="Matzinger P">P Matzinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ong, Py" uniqKey="Ong P">PY Ong</name>
</author>
<author>
<name sortKey="Ohtake, T" uniqKey="Ohtake T">T Ohtake</name>
</author>
<author>
<name sortKey="Brandt, C" uniqKey="Brandt C">C Brandt</name>
</author>
<author>
<name sortKey="Strickland, I" uniqKey="Strickland I">I Strickland</name>
</author>
<author>
<name sortKey="Boguniewicz, M" uniqKey="Boguniewicz M">M Boguniewicz</name>
</author>
<author>
<name sortKey="Ganz, T" uniqKey="Ganz T">T Ganz</name>
</author>
<author>
<name sortKey="Gallo, Rl" uniqKey="Gallo R">RL Gallo</name>
</author>
<author>
<name sortKey="Leung, Dy" uniqKey="Leung D">DY Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Kleijn, D" uniqKey="De Kleijn D">D de Kleijn</name>
</author>
<author>
<name sortKey="Pasterkamp, G" uniqKey="Pasterkamp G">G Pasterkamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strowig, T" uniqKey="Strowig T">T Strowig</name>
</author>
<author>
<name sortKey="Henao Mejia, J" uniqKey="Henao Mejia J">J Henao-Mejia</name>
</author>
<author>
<name sortKey="Elinav, E" uniqKey="Elinav E">E Elinav</name>
</author>
<author>
<name sortKey="Flavell, R" uniqKey="Flavell R">R Flavell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santoni, G" uniqKey="Santoni G">G Santoni</name>
</author>
<author>
<name sortKey="Cardinali, C" uniqKey="Cardinali C">C Cardinali</name>
</author>
<author>
<name sortKey="Morelli, Mb" uniqKey="Morelli M">MB Morelli</name>
</author>
<author>
<name sortKey="Santoni, M" uniqKey="Santoni M">M Santoni</name>
</author>
<author>
<name sortKey="Nabissi, M" uniqKey="Nabissi M">M Nabissi</name>
</author>
<author>
<name sortKey="Amantini, C" uniqKey="Amantini C">C Amantini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meseguer, V" uniqKey="Meseguer V">V Meseguer</name>
</author>
<author>
<name sortKey="Alpizar, Ya" uniqKey="Alpizar Y">YA Alpizar</name>
</author>
<author>
<name sortKey="Luis, E" uniqKey="Luis E">E Luis</name>
</author>
<author>
<name sortKey="Tajada, S" uniqKey="Tajada S">S Tajada</name>
</author>
<author>
<name sortKey="Denlinger, B" uniqKey="Denlinger B">B Denlinger</name>
</author>
<author>
<name sortKey="Fajardo, O" uniqKey="Fajardo O">O Fajardo</name>
</author>
<author>
<name sortKey="Manenschijn, Ja" uniqKey="Manenschijn J">JA Manenschijn</name>
</author>
<author>
<name sortKey="Fernandez Pena, C" uniqKey="Fernandez Pena C">C Fernandez-Pena</name>
</author>
<author>
<name sortKey="Talavera, A" uniqKey="Talavera A">A Talavera</name>
</author>
<author>
<name sortKey="Kichko, T" uniqKey="Kichko T">T Kichko</name>
</author>
<author>
<name sortKey="Navia, B" uniqKey="Navia B">B Navia</name>
</author>
<author>
<name sortKey="Sanchez, A" uniqKey="Sanchez A">A Sanchez</name>
</author>
<author>
<name sortKey="Senaris, R" uniqKey="Senaris R">R Senaris</name>
</author>
<author>
<name sortKey="Reeh, P" uniqKey="Reeh P">P Reeh</name>
</author>
<author>
<name sortKey="Perez Garcia, Mt" uniqKey="Perez Garcia M">MT Perez-Garcia</name>
</author>
<author>
<name sortKey="Lopez Lopez, Jr" uniqKey="Lopez Lopez J">JR Lopez-Lopez</name>
</author>
<author>
<name sortKey="Voets, T" uniqKey="Voets T">T Voets</name>
</author>
<author>
<name sortKey="Belmonte, C" uniqKey="Belmonte C">C Belmonte</name>
</author>
<author>
<name sortKey="Talavera, K" uniqKey="Talavera K">K Talavera</name>
</author>
<author>
<name sortKey="Viana, F" uniqKey="Viana F">F Viana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tauseef, M" uniqKey="Tauseef M">M Tauseef</name>
</author>
<author>
<name sortKey="Knezevic, N" uniqKey="Knezevic N">N Knezevic</name>
</author>
<author>
<name sortKey="Chava, Kr" uniqKey="Chava K">KR Chava</name>
</author>
<author>
<name sortKey="Smith, M" uniqKey="Smith M">M Smith</name>
</author>
<author>
<name sortKey="Sukriti, S" uniqKey="Sukriti S">S Sukriti</name>
</author>
<author>
<name sortKey="Gianaris, N" uniqKey="Gianaris N">N Gianaris</name>
</author>
<author>
<name sortKey="Obukhov, Ag" uniqKey="Obukhov A">AG Obukhov</name>
</author>
<author>
<name sortKey="Vogel, Sm" uniqKey="Vogel S">SM Vogel</name>
</author>
<author>
<name sortKey="Schraufnagel, De" uniqKey="Schraufnagel D">DE Schraufnagel</name>
</author>
<author>
<name sortKey="Dietrich, A" uniqKey="Dietrich A">A Dietrich</name>
</author>
<author>
<name sortKey="Birnbaumer, L" uniqKey="Birnbaumer L">L Birnbaumer</name>
</author>
<author>
<name sortKey="Malik, Ab" uniqKey="Malik A">AB Malik</name>
</author>
<author>
<name sortKey="Mehta, D" uniqKey="Mehta D">D Mehta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becerra, A" uniqKey="Becerra A">A Becerra</name>
</author>
<author>
<name sortKey="Echeverria, C" uniqKey="Echeverria C">C Echeverria</name>
</author>
<author>
<name sortKey="Varela, D" uniqKey="Varela D">D Varela</name>
</author>
<author>
<name sortKey="Sarmiento, D" uniqKey="Sarmiento D">D Sarmiento</name>
</author>
<author>
<name sortKey="Armisen, R" uniqKey="Armisen R">R Armisen</name>
</author>
<author>
<name sortKey="Nunez Villena, F" uniqKey="Nunez Villena F">F Nunez-Villena</name>
</author>
<author>
<name sortKey="Montecinos, M" uniqKey="Montecinos M">M Montecinos</name>
</author>
<author>
<name sortKey="Simon, F" uniqKey="Simon F">F Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Echeverria, C" uniqKey="Echeverria C">C Echeverria</name>
</author>
<author>
<name sortKey="Montorfano, I" uniqKey="Montorfano I">I Montorfano</name>
</author>
<author>
<name sortKey="Hermosilla, T" uniqKey="Hermosilla T">T Hermosilla</name>
</author>
<author>
<name sortKey="Armisen, R" uniqKey="Armisen R">R Armisen</name>
</author>
<author>
<name sortKey="Velasquez, La" uniqKey="Velasquez L">LA Velasquez</name>
</author>
<author>
<name sortKey="Cabello Verrugio, C" uniqKey="Cabello Verrugio C">C Cabello-Verrugio</name>
</author>
<author>
<name sortKey="Varela, D" uniqKey="Varela D">D Varela</name>
</author>
<author>
<name sortKey="Simon, F" uniqKey="Simon F">F Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assas, Bm" uniqKey="Assas B">BM Assas</name>
</author>
<author>
<name sortKey="Miyan, Ja" uniqKey="Miyan J">JA Miyan</name>
</author>
<author>
<name sortKey="Pennock, Jl" uniqKey="Pennock J">JL Pennock</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramsey, Is" uniqKey="Ramsey I">IS Ramsey</name>
</author>
<author>
<name sortKey="Delling, M" uniqKey="Delling M">M Delling</name>
</author>
<author>
<name sortKey="Clapham, De" uniqKey="Clapham D">DE Clapham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilius, B" uniqKey="Nilius B">B Nilius</name>
</author>
<author>
<name sortKey="Owsianik, G" uniqKey="Owsianik G">G Owsianik</name>
</author>
<author>
<name sortKey="Voets, T" uniqKey="Voets T">T Voets</name>
</author>
<author>
<name sortKey="Peters, Ja" uniqKey="Peters J">JA Peters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clapham, De" uniqKey="Clapham D">DE Clapham</name>
</author>
<author>
<name sortKey="Montell, C" uniqKey="Montell C">C Montell</name>
</author>
<author>
<name sortKey="Schultz, G" uniqKey="Schultz G">G Schultz</name>
</author>
<author>
<name sortKey="Julius, D" uniqKey="Julius D">D Julius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Owsianik, G" uniqKey="Owsianik G">G Owsianik</name>
</author>
<author>
<name sortKey="Talavera, K" uniqKey="Talavera K">K Talavera</name>
</author>
<author>
<name sortKey="Voets, T" uniqKey="Voets T">T Voets</name>
</author>
<author>
<name sortKey="Nilius, B" uniqKey="Nilius B">B Nilius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ulasli, M" uniqKey="Ulasli M">M Ulasli</name>
</author>
<author>
<name sortKey="Gurses, Sa" uniqKey="Gurses S">SA Gurses</name>
</author>
<author>
<name sortKey="Bayraktar, R" uniqKey="Bayraktar R">R Bayraktar</name>
</author>
<author>
<name sortKey="Yumrutas, O" uniqKey="Yumrutas O">O Yumrutas</name>
</author>
<author>
<name sortKey="Oztuzcu, S" uniqKey="Oztuzcu S">S Oztuzcu</name>
</author>
<author>
<name sortKey="Igci, M" uniqKey="Igci M">M Igci</name>
</author>
<author>
<name sortKey="Igci, Yz" uniqKey="Igci Y">YZ Igci</name>
</author>
<author>
<name sortKey="Cakmak, Ea" uniqKey="Cakmak E">EA Cakmak</name>
</author>
<author>
<name sortKey="Arslan, A" uniqKey="Arslan A">A Arslan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdullah, H" uniqKey="Abdullah H">H Abdullah</name>
</author>
<author>
<name sortKey="Heaney, Lg" uniqKey="Heaney L">LG Heaney</name>
</author>
<author>
<name sortKey="Cosby, Sl" uniqKey="Cosby S">SL Cosby</name>
</author>
<author>
<name sortKey="Mcgarvey, Lp" uniqKey="Mcgarvey L">LP McGarvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X Zhou</name>
</author>
<author>
<name sortKey="Ye, Y" uniqKey="Ye Y">Y Ye</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Privratsky, B" uniqKey="Privratsky B">B Privratsky</name>
</author>
<author>
<name sortKey="Tan, S" uniqKey="Tan S">S Tan</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z Zhou</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Wei, Yq" uniqKey="Wei Y">YQ Wei</name>
</author>
<author>
<name sortKey="Birnbaumer, L" uniqKey="Birnbaumer L">L Birnbaumer</name>
</author>
<author>
<name sortKey="Singh, Bb" uniqKey="Singh B">BB Singh</name>
</author>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Ck" uniqKey="Sun C">CK Sun</name>
</author>
<author>
<name sortKey="Zhen, Yy" uniqKey="Zhen Y">YY Zhen</name>
</author>
<author>
<name sortKey="Lu, Hi" uniqKey="Lu H">HI Lu</name>
</author>
<author>
<name sortKey="Sung, Ph" uniqKey="Sung P">PH Sung</name>
</author>
<author>
<name sortKey="Chang, Lt" uniqKey="Chang L">LT Chang</name>
</author>
<author>
<name sortKey="Tsai, Th" uniqKey="Tsai T">TH Tsai</name>
</author>
<author>
<name sortKey="Sheu, Jj" uniqKey="Sheu J">JJ Sheu</name>
</author>
<author>
<name sortKey="Chen, Yl" uniqKey="Chen Y">YL Chen</name>
</author>
<author>
<name sortKey="Chua, S" uniqKey="Chua S">S Chua</name>
</author>
<author>
<name sortKey="Chang, Hw" uniqKey="Chang H">HW Chang</name>
</author>
<author>
<name sortKey="Chen, Yl" uniqKey="Chen Y">YL Chen</name>
</author>
<author>
<name sortKey="Lee, Fy" uniqKey="Lee F">FY Lee</name>
</author>
<author>
<name sortKey="Yip, Hk" uniqKey="Yip H">HK Yip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, A" uniqKey="Chauhan A">A Chauhan</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Pani, B" uniqKey="Pani B">B Pani</name>
</author>
<author>
<name sortKey="Quenumzangbe, F" uniqKey="Quenumzangbe F">F Quenumzangbe</name>
</author>
<author>
<name sortKey="Sharma, J" uniqKey="Sharma J">J Sharma</name>
</author>
<author>
<name sortKey="Singh, Bb" uniqKey="Singh B">BB Singh</name>
</author>
<author>
<name sortKey="Mishra, Bb" uniqKey="Mishra B">BB Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Py, Bf" uniqKey="Py B">BF Py</name>
</author>
<author>
<name sortKey="Jin, M" uniqKey="Jin M">M Jin</name>
</author>
<author>
<name sortKey="Desai, Bn" uniqKey="Desai B">BN Desai</name>
</author>
<author>
<name sortKey="Penumaka, A" uniqKey="Penumaka A">A Penumaka</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
<author>
<name sortKey="Kober, M" uniqKey="Kober M">M Kober</name>
</author>
<author>
<name sortKey="Dietrich, A" uniqKey="Dietrich A">A Dietrich</name>
</author>
<author>
<name sortKey="Lipinski, Mm" uniqKey="Lipinski M">MM Lipinski</name>
</author>
<author>
<name sortKey="Henry, T" uniqKey="Henry T">T Henry</name>
</author>
<author>
<name sortKey="Clapham, De" uniqKey="Clapham D">DE Clapham</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vohra, Pk" uniqKey="Vohra P">PK Vohra</name>
</author>
<author>
<name sortKey="Thompson, Ma" uniqKey="Thompson M">MA Thompson</name>
</author>
<author>
<name sortKey="Sathish, V" uniqKey="Sathish V">V Sathish</name>
</author>
<author>
<name sortKey="Kiel, A" uniqKey="Kiel A">A Kiel</name>
</author>
<author>
<name sortKey="Jerde, C" uniqKey="Jerde C">C Jerde</name>
</author>
<author>
<name sortKey="Pabelick, Cm" uniqKey="Pabelick C">CM Pabelick</name>
</author>
<author>
<name sortKey="Singh, Bb" uniqKey="Singh B">BB Singh</name>
</author>
<author>
<name sortKey="Prakash, Ys" uniqKey="Prakash Y">YS Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarmiento, D" uniqKey="Sarmiento D">D Sarmiento</name>
</author>
<author>
<name sortKey="Montorfano, I" uniqKey="Montorfano I">I Montorfano</name>
</author>
<author>
<name sortKey="Caceres, M" uniqKey="Caceres M">M Caceres</name>
</author>
<author>
<name sortKey="Echeverria, C" uniqKey="Echeverria C">C Echeverria</name>
</author>
<author>
<name sortKey="Fernandez, R" uniqKey="Fernandez R">R Fernandez</name>
</author>
<author>
<name sortKey="Cabello Verrugio, C" uniqKey="Cabello Verrugio C">C Cabello-Verrugio</name>
</author>
<author>
<name sortKey="Cerda, O" uniqKey="Cerda O">O Cerda</name>
</author>
<author>
<name sortKey="Tapia, P" uniqKey="Tapia P">P Tapia</name>
</author>
<author>
<name sortKey="Simon, F" uniqKey="Simon F">F Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knowles, H" uniqKey="Knowles H">H Knowles</name>
</author>
<author>
<name sortKey="Heizer, Jw" uniqKey="Heizer J">JW Heizer</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Chapman, K" uniqKey="Chapman K">K Chapman</name>
</author>
<author>
<name sortKey="Ogden, Ca" uniqKey="Ogden C">CA Ogden</name>
</author>
<author>
<name sortKey="Andreasen, K" uniqKey="Andreasen K">K Andreasen</name>
</author>
<author>
<name sortKey="Shapland, E" uniqKey="Shapland E">E Shapland</name>
</author>
<author>
<name sortKey="Kucera, G" uniqKey="Kucera G">G Kucera</name>
</author>
<author>
<name sortKey="Mogan, J" uniqKey="Mogan J">J Mogan</name>
</author>
<author>
<name sortKey="Humann, J" uniqKey="Humann J">J Humann</name>
</author>
<author>
<name sortKey="Lenz, Ll" uniqKey="Lenz L">LL Lenz</name>
</author>
<author>
<name sortKey="Morrison, Ad" uniqKey="Morrison A">AD Morrison</name>
</author>
<author>
<name sortKey="Perraud, Al" uniqKey="Perraud A">AL Perraud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, X" uniqKey="Qian X">X Qian</name>
</author>
<author>
<name sortKey="Numata, T" uniqKey="Numata T">T Numata</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Hou, J" uniqKey="Hou J">J Hou</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hwang, Sw" uniqKey="Hwang S">SW Hwang</name>
</author>
<author>
<name sortKey="Kim, N" uniqKey="Kim N">N Kim</name>
</author>
<author>
<name sortKey="Jung, Hk" uniqKey="Jung H">HK Jung</name>
</author>
<author>
<name sortKey="Park, Jh" uniqKey="Park J">JH Park</name>
</author>
<author>
<name sortKey="Choi, Yj" uniqKey="Choi Y">YJ Choi</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Kim, Js" uniqKey="Kim J">JS Kim</name>
</author>
<author>
<name sortKey="Jung, Hc" uniqKey="Jung H">HC Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guptill, V" uniqKey="Guptill V">V Guptill</name>
</author>
<author>
<name sortKey="Cui, X" uniqKey="Cui X">X Cui</name>
</author>
<author>
<name sortKey="Khaibullina, A" uniqKey="Khaibullina A">A Khaibullina</name>
</author>
<author>
<name sortKey="Keller, Jm" uniqKey="Keller J">JM Keller</name>
</author>
<author>
<name sortKey="Spornick, N" uniqKey="Spornick N">N Spornick</name>
</author>
<author>
<name sortKey="Mannes, A" uniqKey="Mannes A">A Mannes</name>
</author>
<author>
<name sortKey="Iadarola, M" uniqKey="Iadarola M">M Iadarola</name>
</author>
<author>
<name sortKey="Quezado, Zm" uniqKey="Quezado Z">ZM Quezado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wanner, Sp" uniqKey="Wanner S">SP Wanner</name>
</author>
<author>
<name sortKey="Garami, A" uniqKey="Garami A">A Garami</name>
</author>
<author>
<name sortKey="Pakai, E" uniqKey="Pakai E">E Pakai</name>
</author>
<author>
<name sortKey="Oliveira, Dl" uniqKey="Oliveira D">DL Oliveira</name>
</author>
<author>
<name sortKey="Gavva, Nr" uniqKey="Gavva N">NR Gavva</name>
</author>
<author>
<name sortKey="Coimbra, Cc" uniqKey="Coimbra C">CC Coimbra</name>
</author>
<author>
<name sortKey="Romanovsky, Aa" uniqKey="Romanovsky A">AA Romanovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shin, Yh" uniqKey="Shin Y">YH Shin</name>
</author>
<author>
<name sortKey="Namkoong, E" uniqKey="Namkoong E">E Namkoong</name>
</author>
<author>
<name sortKey="Choi, S" uniqKey="Choi S">S Choi</name>
</author>
<author>
<name sortKey="Bae, Js" uniqKey="Bae J">JS Bae</name>
</author>
<author>
<name sortKey="Jin, M" uniqKey="Jin M">M Jin</name>
</author>
<author>
<name sortKey="Hwang, Sm" uniqKey="Hwang S">SM Hwang</name>
</author>
<author>
<name sortKey="Arote, R" uniqKey="Arote R">R Arote</name>
</author>
<author>
<name sortKey="Choi, Sy" uniqKey="Choi S">SY Choi</name>
</author>
<author>
<name sortKey="Park, K" uniqKey="Park K">K Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mozsik, G" uniqKey="Mozsik G">G Mozsik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandes, Es" uniqKey="Fernandes E">ES Fernandes</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L Liang</name>
</author>
<author>
<name sortKey="Smillie, Sj" uniqKey="Smillie S">SJ Smillie</name>
</author>
<author>
<name sortKey="Kaiser, F" uniqKey="Kaiser F">F Kaiser</name>
</author>
<author>
<name sortKey="Purcell, R" uniqKey="Purcell R">R Purcell</name>
</author>
<author>
<name sortKey="Rivett, Dw" uniqKey="Rivett D">DW Rivett</name>
</author>
<author>
<name sortKey="Alam, S" uniqKey="Alam S">S Alam</name>
</author>
<author>
<name sortKey="Howat, S" uniqKey="Howat S">S Howat</name>
</author>
<author>
<name sortKey="Collins, H" uniqKey="Collins H">H Collins</name>
</author>
<author>
<name sortKey="Thompson, Sj" uniqKey="Thompson S">SJ Thompson</name>
</author>
<author>
<name sortKey="Keeble, Je" uniqKey="Keeble J">JE Keeble</name>
</author>
<author>
<name sortKey="Riffo Vasquez, Y" uniqKey="Riffo Vasquez Y">Y Riffo-Vasquez</name>
</author>
<author>
<name sortKey="Bruce, Kd" uniqKey="Bruce K">KD Bruce</name>
</author>
<author>
<name sortKey="Brain, Sd" uniqKey="Brain S">SD Brain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmeister, C" uniqKey="Hoffmeister C">C Hoffmeister</name>
</author>
<author>
<name sortKey="Trevisan, G" uniqKey="Trevisan G">G Trevisan</name>
</author>
<author>
<name sortKey="Rossato, Mf" uniqKey="Rossato M">MF Rossato</name>
</author>
<author>
<name sortKey="De Oliveira, Sm" uniqKey="De Oliveira S">SM de Oliveira</name>
</author>
<author>
<name sortKey="Gomez, Mv" uniqKey="Gomez M">MV Gomez</name>
</author>
<author>
<name sortKey="Ferreira, J" uniqKey="Ferreira J">J Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moilanen, Lj" uniqKey="Moilanen L">LJ Moilanen</name>
</author>
<author>
<name sortKey="Hamalainen, M" uniqKey="Hamalainen M">M Hamalainen</name>
</author>
<author>
<name sortKey="Lehtimaki, L" uniqKey="Lehtimaki L">L Lehtimaki</name>
</author>
<author>
<name sortKey="Nieminen, Rm" uniqKey="Nieminen R">RM Nieminen</name>
</author>
<author>
<name sortKey="Moilanen, E" uniqKey="Moilanen E">E Moilanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trevisan, G" uniqKey="Trevisan G">G Trevisan</name>
</author>
<author>
<name sortKey="Hoffmeister, C" uniqKey="Hoffmeister C">C Hoffmeister</name>
</author>
<author>
<name sortKey="Rossato, Mf" uniqKey="Rossato M">MF Rossato</name>
</author>
<author>
<name sortKey="Oliveira, Sm" uniqKey="Oliveira S">SM Oliveira</name>
</author>
<author>
<name sortKey="Silva, Ma" uniqKey="Silva M">MA Silva</name>
</author>
<author>
<name sortKey="Ineu, Rp" uniqKey="Ineu R">RP Ineu</name>
</author>
<author>
<name sortKey="Guerra, Gp" uniqKey="Guerra G">GP Guerra</name>
</author>
<author>
<name sortKey="Materazzi, S" uniqKey="Materazzi S">S Materazzi</name>
</author>
<author>
<name sortKey="Fusi, C" uniqKey="Fusi C">C Fusi</name>
</author>
<author>
<name sortKey="Nassini, R" uniqKey="Nassini R">R Nassini</name>
</author>
<author>
<name sortKey="Geppetti, P" uniqKey="Geppetti P">P Geppetti</name>
</author>
<author>
<name sortKey="Ferreira, J" uniqKey="Ferreira J">J Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trevisan, G" uniqKey="Trevisan G">G Trevisan</name>
</author>
<author>
<name sortKey="Hoffmeister, C" uniqKey="Hoffmeister C">C Hoffmeister</name>
</author>
<author>
<name sortKey="Rossato, Mf" uniqKey="Rossato M">MF Rossato</name>
</author>
<author>
<name sortKey="Oliveira, Sm" uniqKey="Oliveira S">SM Oliveira</name>
</author>
<author>
<name sortKey="Silva, Ma" uniqKey="Silva M">MA Silva</name>
</author>
<author>
<name sortKey="Silva, Cr" uniqKey="Silva C">CR Silva</name>
</author>
<author>
<name sortKey="Fusi, C" uniqKey="Fusi C">C Fusi</name>
</author>
<author>
<name sortKey="Tonello, R" uniqKey="Tonello R">R Tonello</name>
</author>
<author>
<name sortKey="Minocci, D" uniqKey="Minocci D">D Minocci</name>
</author>
<author>
<name sortKey="Guerra, Gp" uniqKey="Guerra G">GP Guerra</name>
</author>
<author>
<name sortKey="Materazzi, S" uniqKey="Materazzi S">S Materazzi</name>
</author>
<author>
<name sortKey="Nassini, R" uniqKey="Nassini R">R Nassini</name>
</author>
<author>
<name sortKey="Geppetti, P" uniqKey="Geppetti P">P Geppetti</name>
</author>
<author>
<name sortKey="Ferreira, J" uniqKey="Ferreira J">J Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmeister, C" uniqKey="Hoffmeister C">C Hoffmeister</name>
</author>
<author>
<name sortKey="Silva, Ma" uniqKey="Silva M">MA Silva</name>
</author>
<author>
<name sortKey="Rossato, Mf" uniqKey="Rossato M">MF Rossato</name>
</author>
<author>
<name sortKey="Trevisan, G" uniqKey="Trevisan G">G Trevisan</name>
</author>
<author>
<name sortKey="Oliveira, Sm" uniqKey="Oliveira S">SM Oliveira</name>
</author>
<author>
<name sortKey="Guerra, Gp" uniqKey="Guerra G">GP Guerra</name>
</author>
<author>
<name sortKey="Silva, Cr" uniqKey="Silva C">CR Silva</name>
</author>
<author>
<name sortKey="Ferreira, J" uniqKey="Ferreira J">J Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tall, Ar" uniqKey="Tall A">AR Tall</name>
</author>
<author>
<name sortKey="Yvan Charvet, L" uniqKey="Yvan Charvet L">L Yvan-Charvet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenhouse Dantsker, A" uniqKey="Rosenhouse Dantsker A">A Rosenhouse-Dantsker</name>
</author>
<author>
<name sortKey="Mehta, D" uniqKey="Mehta D">D Mehta</name>
</author>
<author>
<name sortKey="Levitan, I" uniqKey="Levitan I">I Levitan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergdahl, A" uniqKey="Bergdahl A">A Bergdahl</name>
</author>
<author>
<name sortKey="Gomez, Mf" uniqKey="Gomez M">MF Gomez</name>
</author>
<author>
<name sortKey="Dreja, K" uniqKey="Dreja K">K Dreja</name>
</author>
<author>
<name sortKey="Xu, Sz" uniqKey="Xu S">SZ Xu</name>
</author>
<author>
<name sortKey="Adner, M" uniqKey="Adner M">M Adner</name>
</author>
<author>
<name sortKey="Beech, Dj" uniqKey="Beech D">DJ Beech</name>
</author>
<author>
<name sortKey="Broman, J" uniqKey="Broman J">J Broman</name>
</author>
<author>
<name sortKey="Hellstrand, P" uniqKey="Hellstrand P">P Hellstrand</name>
</author>
<author>
<name sortKey="Sward, K" uniqKey="Sward K">K Sward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graziani, A" uniqKey="Graziani A">A Graziani</name>
</author>
<author>
<name sortKey="Rosker, C" uniqKey="Rosker C">C Rosker</name>
</author>
<author>
<name sortKey="Kohlwein, Sd" uniqKey="Kohlwein S">SD Kohlwein</name>
</author>
<author>
<name sortKey="Zhu, Mx" uniqKey="Zhu M">MX Zhu</name>
</author>
<author>
<name sortKey="Romanin, C" uniqKey="Romanin C">C Romanin</name>
</author>
<author>
<name sortKey="Sattler, W" uniqKey="Sattler W">W Sattler</name>
</author>
<author>
<name sortKey="Groschner, K" uniqKey="Groschner K">K Groschner</name>
</author>
<author>
<name sortKey="Poteser, M" uniqKey="Poteser M">M Poteser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Sukumaran, P" uniqKey="Sukumaran P">P Sukumaran</name>
</author>
<author>
<name sortKey="Varma, A" uniqKey="Varma A">A Varma</name>
</author>
<author>
<name sortKey="Derry, S" uniqKey="Derry S">S Derry</name>
</author>
<author>
<name sortKey="Sahmoun, Ae" uniqKey="Sahmoun A">AE Sahmoun</name>
</author>
<author>
<name sortKey="Singh, Bb" uniqKey="Singh B">BB Singh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naylor, J" uniqKey="Naylor J">J Naylor</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Milligan, Cj" uniqKey="Milligan C">CJ Milligan</name>
</author>
<author>
<name sortKey="Zeng, F" uniqKey="Zeng F">F Zeng</name>
</author>
<author>
<name sortKey="Sukumar, P" uniqKey="Sukumar P">P Sukumar</name>
</author>
<author>
<name sortKey="Hou, B" uniqKey="Hou B">B Hou</name>
</author>
<author>
<name sortKey="Sedo, A" uniqKey="Sedo A">A Sedo</name>
</author>
<author>
<name sortKey="Yuldasheva, N" uniqKey="Yuldasheva N">N Yuldasheva</name>
</author>
<author>
<name sortKey="Majeed, Y" uniqKey="Majeed Y">Y Majeed</name>
</author>
<author>
<name sortKey="Beri, D" uniqKey="Beri D">D Beri</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S Jiang</name>
</author>
<author>
<name sortKey="Seymour, Va" uniqKey="Seymour V">VA Seymour</name>
</author>
<author>
<name sortKey="Mckeown, L" uniqKey="Mckeown L">L McKeown</name>
</author>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B Kumar</name>
</author>
<author>
<name sortKey="Harteneck, C" uniqKey="Harteneck C">C Harteneck</name>
</author>
<author>
<name sortKey="O Egan, D" uniqKey="O Egan D">D O’Regan</name>
</author>
<author>
<name sortKey="Wheatcroft, Sb" uniqKey="Wheatcroft S">SB Wheatcroft</name>
</author>
<author>
<name sortKey="Kearney, Mt" uniqKey="Kearney M">MT Kearney</name>
</author>
<author>
<name sortKey="Jones, C" uniqKey="Jones C">C Jones</name>
</author>
<author>
<name sortKey="Porter, Ke" uniqKey="Porter K">KE Porter</name>
</author>
<author>
<name sortKey="Beech, Dj" uniqKey="Beech D">DJ Beech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fonfria, E" uniqKey="Fonfria E">E Fonfria</name>
</author>
<author>
<name sortKey="Marshall, Ic" uniqKey="Marshall I">IC Marshall</name>
</author>
<author>
<name sortKey="Boyfield, I" uniqKey="Boyfield I">I Boyfield</name>
</author>
<author>
<name sortKey="Skaper, Sd" uniqKey="Skaper S">SD Skaper</name>
</author>
<author>
<name sortKey="Hughes, Jp" uniqKey="Hughes J">JP Hughes</name>
</author>
<author>
<name sortKey="Owen, De" uniqKey="Owen D">DE Owen</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Miller, Ba" uniqKey="Miller B">BA Miller</name>
</author>
<author>
<name sortKey="Benham, Cd" uniqKey="Benham C">CD Benham</name>
</author>
<author>
<name sortKey="Mcnulty, S" uniqKey="Mcnulty S">S McNulty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, L" uniqKey="Park L">L Park</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Moore, J" uniqKey="Moore J">J Moore</name>
</author>
<author>
<name sortKey="Girouard, H" uniqKey="Girouard H">H Girouard</name>
</author>
<author>
<name sortKey="Zhou, P" uniqKey="Zhou P">P Zhou</name>
</author>
<author>
<name sortKey="Anrather, J" uniqKey="Anrather J">J Anrather</name>
</author>
<author>
<name sortKey="Iadecola, C" uniqKey="Iadecola C">C Iadecola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koizumi, K" uniqKey="Koizumi K">K Koizumi</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Park, L" uniqKey="Park L">L Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilling, T" uniqKey="Schilling T">T Schilling</name>
</author>
<author>
<name sortKey="Eder, C" uniqKey="Eder C">C Eder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronco, V" uniqKey="Ronco V">V Ronco</name>
</author>
<author>
<name sortKey="Grolla, Aa" uniqKey="Grolla A">AA Grolla</name>
</author>
<author>
<name sortKey="Glasnov, Tn" uniqKey="Glasnov T">TN Glasnov</name>
</author>
<author>
<name sortKey="Canonico, Pl" uniqKey="Canonico P">PL Canonico</name>
</author>
<author>
<name sortKey="Verkhratsky, A" uniqKey="Verkhratsky A">A Verkhratsky</name>
</author>
<author>
<name sortKey="Genazzani, Aa" uniqKey="Genazzani A">AA Genazzani</name>
</author>
<author>
<name sortKey="Lim, D" uniqKey="Lim D">D Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, Jz" uniqKey="Bai J">JZ Bai</name>
</author>
<author>
<name sortKey="Lipski, J" uniqKey="Lipski J">J Lipski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linde, Ci" uniqKey="Linde C">CI Linde</name>
</author>
<author>
<name sortKey="Baryshnikov, Sg" uniqKey="Baryshnikov S">SG Baryshnikov</name>
</author>
<author>
<name sortKey="Mazzocco Spezzia, A" uniqKey="Mazzocco Spezzia A">A Mazzocco-Spezzia</name>
</author>
<author>
<name sortKey="Golovina, Va" uniqKey="Golovina V">VA Golovina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamel, E" uniqKey="Hamel E">E Hamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Papadopoulos, P" uniqKey="Papadopoulos P">P Papadopoulos</name>
</author>
<author>
<name sortKey="Hamel, E" uniqKey="Hamel E">E Hamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bessac, Bf" uniqKey="Bessac B">BF Bessac</name>
</author>
<author>
<name sortKey="Jordt, Se" uniqKey="Jordt S">SE Jordt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Moreno Vinasco, L" uniqKey="Moreno Vinasco L">L Moreno-Vinasco</name>
</author>
<author>
<name sortKey="Lang, Gd" uniqKey="Lang G">GD Lang</name>
</author>
<author>
<name sortKey="Siegler, Jh" uniqKey="Siegler J">JH Siegler</name>
</author>
<author>
<name sortKey="Mathew, B" uniqKey="Mathew B">B Mathew</name>
</author>
<author>
<name sortKey="Usatyuk, Pv" uniqKey="Usatyuk P">PV Usatyuk</name>
</author>
<author>
<name sortKey="Samet, Jm" uniqKey="Samet J">JM Samet</name>
</author>
<author>
<name sortKey="Geyh, As" uniqKey="Geyh A">AS Geyh</name>
</author>
<author>
<name sortKey="Breysse, Pn" uniqKey="Breysse P">PN Breysse</name>
</author>
<author>
<name sortKey="Natarajan, V" uniqKey="Natarajan V">V Natarajan</name>
</author>
<author>
<name sortKey="Garcia, Jg" uniqKey="Garcia J">JG Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, S" uniqKey="Robertson S">S Robertson</name>
</author>
<author>
<name sortKey="Thomson, Al" uniqKey="Thomson A">AL Thomson</name>
</author>
<author>
<name sortKey="Carter, R" uniqKey="Carter R">R Carter</name>
</author>
<author>
<name sortKey="Stott, Hr" uniqKey="Stott H">HR Stott</name>
</author>
<author>
<name sortKey="Shaw, Ca" uniqKey="Shaw C">CA Shaw</name>
</author>
<author>
<name sortKey="Hadoke, Pw" uniqKey="Hadoke P">PW Hadoke</name>
</author>
<author>
<name sortKey="Newby, De" uniqKey="Newby D">DE Newby</name>
</author>
<author>
<name sortKey="Miller, Mr" uniqKey="Miller M">MR Miller</name>
</author>
<author>
<name sortKey="Gray, Ga" uniqKey="Gray G">GA Gray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deering Rice, Ce" uniqKey="Deering Rice C">CE Deering-Rice</name>
</author>
<author>
<name sortKey="Johansen, Me" uniqKey="Johansen M">ME Johansen</name>
</author>
<author>
<name sortKey="Roberts, Jk" uniqKey="Roberts J">JK Roberts</name>
</author>
<author>
<name sortKey="Thomas, Kc" uniqKey="Thomas K">KC Thomas</name>
</author>
<author>
<name sortKey="Romero, Eg" uniqKey="Romero E">EG Romero</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Yost, Gs" uniqKey="Yost G">GS Yost</name>
</author>
<author>
<name sortKey="Veranth, Jm" uniqKey="Veranth J">JM Veranth</name>
</author>
<author>
<name sortKey="Reilly, Ca" uniqKey="Reilly C">CA Reilly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghelfi, E" uniqKey="Ghelfi E">E Ghelfi</name>
</author>
<author>
<name sortKey="Rhoden, Cr" uniqKey="Rhoden C">CR Rhoden</name>
</author>
<author>
<name sortKey="Wellenius, Ga" uniqKey="Wellenius G">GA Wellenius</name>
</author>
<author>
<name sortKey="Lawrence, J" uniqKey="Lawrence J">J Lawrence</name>
</author>
<author>
<name sortKey="Gonzalez Flecha, B" uniqKey="Gonzalez Flecha B">B Gonzalez-Flecha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agopyan, N" uniqKey="Agopyan N">N Agopyan</name>
</author>
<author>
<name sortKey="Head, J" uniqKey="Head J">J Head</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S Yu</name>
</author>
<author>
<name sortKey="Simon, Sa" uniqKey="Simon S">SA Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agopyan, N" uniqKey="Agopyan N">N Agopyan</name>
</author>
<author>
<name sortKey="Bhatti, T" uniqKey="Bhatti T">T Bhatti</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S Yu</name>
</author>
<author>
<name sortKey="Simon, Sa" uniqKey="Simon S">SA Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapiro, D" uniqKey="Shapiro D">D Shapiro</name>
</author>
<author>
<name sortKey="Deering Rice, Ce" uniqKey="Deering Rice C">CE Deering-Rice</name>
</author>
<author>
<name sortKey="Romero, Eg" uniqKey="Romero E">EG Romero</name>
</author>
<author>
<name sortKey="Hughen, Rw" uniqKey="Hughen R">RW Hughen</name>
</author>
<author>
<name sortKey="Light, Ar" uniqKey="Light A">AR Light</name>
</author>
<author>
<name sortKey="Veranth, Jm" uniqKey="Veranth J">JM Veranth</name>
</author>
<author>
<name sortKey="Reilly, Ca" uniqKey="Reilly C">CA Reilly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deering Rice, Ce" uniqKey="Deering Rice C">CE Deering-Rice</name>
</author>
<author>
<name sortKey="Romero, Eg" uniqKey="Romero E">EG Romero</name>
</author>
<author>
<name sortKey="Shapiro, D" uniqKey="Shapiro D">D Shapiro</name>
</author>
<author>
<name sortKey="Hughen, Rw" uniqKey="Hughen R">RW Hughen</name>
</author>
<author>
<name sortKey="Light, Ar" uniqKey="Light A">AR Light</name>
</author>
<author>
<name sortKey="Yost, Gs" uniqKey="Yost G">GS Yost</name>
</author>
<author>
<name sortKey="Veranth, Jm" uniqKey="Veranth J">JM Veranth</name>
</author>
<author>
<name sortKey="Reilly, Ca" uniqKey="Reilly C">CA Reilly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
<author>
<name sortKey="Kanju, P" uniqKey="Kanju P">P Kanju</name>
</author>
<author>
<name sortKey="Patterson, M" uniqKey="Patterson M">M Patterson</name>
</author>
<author>
<name sortKey="Chew, Wl" uniqKey="Chew W">WL Chew</name>
</author>
<author>
<name sortKey="Cho, Sh" uniqKey="Cho S">SH Cho</name>
</author>
<author>
<name sortKey="Gilmour, I" uniqKey="Gilmour I">I Gilmour</name>
</author>
<author>
<name sortKey="Oliver, T" uniqKey="Oliver T">T Oliver</name>
</author>
<author>
<name sortKey="Yasuda, R" uniqKey="Yasuda R">R Yasuda</name>
</author>
<author>
<name sortKey="Ghio, A" uniqKey="Ghio A">A Ghio</name>
</author>
<author>
<name sortKey="Simon, Sa" uniqKey="Simon S">SA Simon</name>
</author>
<author>
<name sortKey="Liedtke, W" uniqKey="Liedtke W">W Liedtke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deretic, V" uniqKey="Deretic V">V Deretic</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sergin, I" uniqKey="Sergin I">I Sergin</name>
</author>
<author>
<name sortKey="Razani, B" uniqKey="Razani B">B Razani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Gao, Q" uniqKey="Gao Q">Q Gao</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M Yang</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Lawas, M" uniqKey="Lawas M">M Lawas</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Bryant Genevier, M" uniqKey="Bryant Genevier M">M Bryant-Genevier</name>
</author>
<author>
<name sortKey="Southall, Nt" uniqKey="Southall N">NT Southall</name>
</author>
<author>
<name sortKey="Marugan, J" uniqKey="Marugan J">J Marugan</name>
</author>
<author>
<name sortKey="Ferrer, M" uniqKey="Ferrer M">M Ferrer</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onyenwoke, Ru" uniqKey="Onyenwoke R">RU Onyenwoke</name>
</author>
<author>
<name sortKey="Sexton, Jz" uniqKey="Sexton J">JZ Sexton</name>
</author>
<author>
<name sortKey="Yan, F" uniqKey="Yan F">F Yan</name>
</author>
<author>
<name sortKey="Diaz, Mc" uniqKey="Diaz M">MC Diaz</name>
</author>
<author>
<name sortKey="Forsberg, Lj" uniqKey="Forsberg L">LJ Forsberg</name>
</author>
<author>
<name sortKey="Major, Mb" uniqKey="Major M">MB Major</name>
</author>
<author>
<name sortKey="Brenman, Je" uniqKey="Brenman J">JE Brenman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, T" uniqKey="Sun T">T Sun</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q Lu</name>
</author>
<author>
<name sortKey="Ren, H" uniqKey="Ren H">H Ren</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Medina, Dl" uniqKey="Medina D">DL Medina</name>
</author>
<author>
<name sortKey="Di Paola, S" uniqKey="Di Paola S">S Di Paola</name>
</author>
<author>
<name sortKey="Peluso, I" uniqKey="Peluso I">I Peluso</name>
</author>
<author>
<name sortKey="Armani, A" uniqKey="Armani A">A Armani</name>
</author>
<author>
<name sortKey="De Stefani, D" uniqKey="De Stefani D">D De Stefani</name>
</author>
<author>
<name sortKey="Venditti, R" uniqKey="Venditti R">R Venditti</name>
</author>
<author>
<name sortKey="Montefusco, S" uniqKey="Montefusco S">S Montefusco</name>
</author>
<author>
<name sortKey="Scotto Rosato, A" uniqKey="Scotto Rosato A">A Scotto-Rosato</name>
</author>
<author>
<name sortKey="Prezioso, C" uniqKey="Prezioso C">C Prezioso</name>
</author>
<author>
<name sortKey="Forrester, A" uniqKey="Forrester A">A Forrester</name>
</author>
<author>
<name sortKey="Settembre, C" uniqKey="Settembre C">C Settembre</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Gao, Q" uniqKey="Gao Q">Q Gao</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Sandri, M" uniqKey="Sandri M">M Sandri</name>
</author>
<author>
<name sortKey="Rizzuto, R" uniqKey="Rizzuto R">R Rizzuto</name>
</author>
<author>
<name sortKey="De Matteis, Ma" uniqKey="De Matteis M">MA De Matteis</name>
</author>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A Ballabio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curcio Morelli, C" uniqKey="Curcio Morelli C">C Curcio-Morelli</name>
</author>
<author>
<name sortKey="Charles, Fa" uniqKey="Charles F">FA Charles</name>
</author>
<author>
<name sortKey="Micsenyi, Mc" uniqKey="Micsenyi M">MC Micsenyi</name>
</author>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y Cao</name>
</author>
<author>
<name sortKey="Venugopal, B" uniqKey="Venugopal B">B Venugopal</name>
</author>
<author>
<name sortKey="Browning, Mf" uniqKey="Browning M">MF Browning</name>
</author>
<author>
<name sortKey="Dobrenis, K" uniqKey="Dobrenis K">K Dobrenis</name>
</author>
<author>
<name sortKey="Cotman, Sl" uniqKey="Cotman S">SL Cotman</name>
</author>
<author>
<name sortKey="Walkley, Su" uniqKey="Walkley S">SU Walkley</name>
</author>
<author>
<name sortKey="Slaugenhaupt, Sa" uniqKey="Slaugenhaupt S">SA Slaugenhaupt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venugopal, B" uniqKey="Venugopal B">B Venugopal</name>
</author>
<author>
<name sortKey="Mesires, Nt" uniqKey="Mesires N">NT Mesires</name>
</author>
<author>
<name sortKey="Kennedy, Jc" uniqKey="Kennedy J">JC Kennedy</name>
</author>
<author>
<name sortKey="Curcio Morelli, C" uniqKey="Curcio Morelli C">C Curcio-Morelli</name>
</author>
<author>
<name sortKey="Laplante, Jm" uniqKey="Laplante J">JM Laplante</name>
</author>
<author>
<name sortKey="Dice, Jf" uniqKey="Dice J">JF Dice</name>
</author>
<author>
<name sortKey="Slaugenhaupt, Sa" uniqKey="Slaugenhaupt S">SA Slaugenhaupt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeevi, Da" uniqKey="Zeevi D">DA Zeevi</name>
</author>
<author>
<name sortKey="Lev, S" uniqKey="Lev S">S Lev</name>
</author>
<author>
<name sortKey="Frumkin, A" uniqKey="Frumkin A">A Frumkin</name>
</author>
<author>
<name sortKey="Minke, B" uniqKey="Minke B">B Minke</name>
</author>
<author>
<name sortKey="Bach, G" uniqKey="Bach G">G Bach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jh" uniqKey="Lee J">JH Lee</name>
</author>
<author>
<name sortKey="Mcbrayer, Mk" uniqKey="Mcbrayer M">MK McBrayer</name>
</author>
<author>
<name sortKey="Wolfe, Dm" uniqKey="Wolfe D">DM Wolfe</name>
</author>
<author>
<name sortKey="Haslett, Lj" uniqKey="Haslett L">LJ Haslett</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Lie, Pp" uniqKey="Lie P">PP Lie</name>
</author>
<author>
<name sortKey="Mohan, P" uniqKey="Mohan P">P Mohan</name>
</author>
<author>
<name sortKey="Coffey, Ee" uniqKey="Coffey E">EE Coffey</name>
</author>
<author>
<name sortKey="Kompella, U" uniqKey="Kompella U">U Kompella</name>
</author>
<author>
<name sortKey="Mitchell, Ch" uniqKey="Mitchell C">CH Mitchell</name>
</author>
<author>
<name sortKey="Lloyd Evans, E" uniqKey="Lloyd Evans E">E Lloyd-Evans</name>
</author>
<author>
<name sortKey="Nixon, Ra" uniqKey="Nixon R">RA Nixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venkatachalam, K" uniqKey="Venkatachalam K">K Venkatachalam</name>
</author>
<author>
<name sortKey="Long, Aa" uniqKey="Long A">AA Long</name>
</author>
<author>
<name sortKey="Elsaesser, R" uniqKey="Elsaesser R">R Elsaesser</name>
</author>
<author>
<name sortKey="Nikolaeva, D" uniqKey="Nikolaeva D">D Nikolaeva</name>
</author>
<author>
<name sortKey="Broadie, K" uniqKey="Broadie K">K Broadie</name>
</author>
<author>
<name sortKey="Montell, C" uniqKey="Montell C">C Montell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martina, Ja" uniqKey="Martina J">JA Martina</name>
</author>
<author>
<name sortKey="Lelouvier, B" uniqKey="Lelouvier B">B Lelouvier</name>
</author>
<author>
<name sortKey="Puertollano, R" uniqKey="Puertollano R">R Puertollano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hj" uniqKey="Kim H">HJ Kim</name>
</author>
<author>
<name sortKey="Soyombo, Aa" uniqKey="Soyombo A">AA Soyombo</name>
</author>
<author>
<name sortKey="Tjon Kon Sang, S" uniqKey="Tjon Kon Sang S">S Tjon-Kon-Sang</name>
</author>
<author>
<name sortKey="So, I" uniqKey="So I">I So</name>
</author>
<author>
<name sortKey="Muallem, S" uniqKey="Muallem S">S Muallem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, S" uniqKey="Choi S">S Choi</name>
</author>
<author>
<name sortKey="Kim, Hj" uniqKey="Kim H">HJ Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miao, Y" uniqKey="Miao Y">Y Miao</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G Li</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Abraham, Sn" uniqKey="Abraham S">SN Abraham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Chu, X" uniqKey="Chu X">X Chu</name>
</author>
<author>
<name sortKey="Tong, Q" uniqKey="Tong Q">Q Tong</name>
</author>
<author>
<name sortKey="Cheung, Jy" uniqKey="Cheung J">JY Cheung</name>
</author>
<author>
<name sortKey="Conrad, K" uniqKey="Conrad K">K Conrad</name>
</author>
<author>
<name sortKey="Masker, K" uniqKey="Masker K">K Masker</name>
</author>
<author>
<name sortKey="Miller, Ba" uniqKey="Miller B">BA Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Sj" uniqKey="Chen S">SJ Chen</name>
</author>
<author>
<name sortKey="Hoffman, Ne" uniqKey="Hoffman N">NE Hoffman</name>
</author>
<author>
<name sortKey="Shanmughapriya, S" uniqKey="Shanmughapriya S">S Shanmughapriya</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L Bao</name>
</author>
<author>
<name sortKey="Keefer, K" uniqKey="Keefer K">K Keefer</name>
</author>
<author>
<name sortKey="Conrad, K" uniqKey="Conrad K">K Conrad</name>
</author>
<author>
<name sortKey="Merali, S" uniqKey="Merali S">S Merali</name>
</author>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Abraham, T" uniqKey="Abraham T">T Abraham</name>
</author>
<author>
<name sortKey="Hirschler Laszkiewicz, I" uniqKey="Hirschler Laszkiewicz I">I Hirschler-Laszkiewicz</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Zhang, Xq" uniqKey="Zhang X">XQ Zhang</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J Song</name>
</author>
<author>
<name sortKey="Barrero, C" uniqKey="Barrero C">C Barrero</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y Shi</name>
</author>
<author>
<name sortKey="Kawasawa, Yi" uniqKey="Kawasawa Y">YI Kawasawa</name>
</author>
<author>
<name sortKey="Bayerl, M" uniqKey="Bayerl M">M Bayerl</name>
</author>
<author>
<name sortKey="Sun, T" uniqKey="Sun T">T Sun</name>
</author>
<author>
<name sortKey="Barbour, M" uniqKey="Barbour M">M Barbour</name>
</author>
<author>
<name sortKey="Wang, Hg" uniqKey="Wang H">HG Wang</name>
</author>
<author>
<name sortKey="Madesh, M" uniqKey="Madesh M">M Madesh</name>
</author>
<author>
<name sortKey="Cheung, Jy" uniqKey="Cheung J">JY Cheung</name>
</author>
<author>
<name sortKey="Miller, Ba" uniqKey="Miller B">BA Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyrsch, P" uniqKey="Wyrsch P">P Wyrsch</name>
</author>
<author>
<name sortKey="Blenn, C" uniqKey="Blenn C">C Blenn</name>
</author>
<author>
<name sortKey="Bader, J" uniqKey="Bader J">J Bader</name>
</author>
<author>
<name sortKey="Althaus, Fr" uniqKey="Althaus F">FR Althaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atsumi, T" uniqKey="Atsumi T">T Atsumi</name>
</author>
<author>
<name sortKey="Singh, R" uniqKey="Singh R">R Singh</name>
</author>
<author>
<name sortKey="Sabharwal, L" uniqKey="Sabharwal L">L Sabharwal</name>
</author>
<author>
<name sortKey="Bando, H" uniqKey="Bando H">H Bando</name>
</author>
<author>
<name sortKey="Meng, J" uniqKey="Meng J">J Meng</name>
</author>
<author>
<name sortKey="Arima, Y" uniqKey="Arima Y">Y Arima</name>
</author>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M Yamada</name>
</author>
<author>
<name sortKey="Harada, M" uniqKey="Harada M">M Harada</name>
</author>
<author>
<name sortKey="Jiang, Jj" uniqKey="Jiang J">JJ Jiang</name>
</author>
<author>
<name sortKey="Kamimura, D" uniqKey="Kamimura D">D Kamimura</name>
</author>
<author>
<name sortKey="Ogura, H" uniqKey="Ogura H">H Ogura</name>
</author>
<author>
<name sortKey="Hirano, T" uniqKey="Hirano T">T Hirano</name>
</author>
<author>
<name sortKey="Murakami, M" uniqKey="Murakami M">M Murakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Pardoll, D" uniqKey="Pardoll D">D Pardoll</name>
</author>
<author>
<name sortKey="Jove, R" uniqKey="Jove R">R Jove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, Bb" uniqKey="Mishra B">BB Mishra</name>
</author>
<author>
<name sortKey="Rathinam, Va" uniqKey="Rathinam V">VA Rathinam</name>
</author>
<author>
<name sortKey="Martens, Gw" uniqKey="Martens G">GW Martens</name>
</author>
<author>
<name sortKey="Martinot, Aj" uniqKey="Martinot A">AJ Martinot</name>
</author>
<author>
<name sortKey="Kornfeld, H" uniqKey="Kornfeld H">H Kornfeld</name>
</author>
<author>
<name sortKey="Fitzgerald, Ka" uniqKey="Fitzgerald K">KA Fitzgerald</name>
</author>
<author>
<name sortKey="Sassetti, Cm" uniqKey="Sassetti C">CM Sassetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fric, J" uniqKey="Fric J">J Fric</name>
</author>
<author>
<name sortKey="Zelante, T" uniqKey="Zelante T">T Zelante</name>
</author>
<author>
<name sortKey="Ricciardi Castagnoli, P" uniqKey="Ricciardi Castagnoli P">P Ricciardi-Castagnoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossol, M" uniqKey="Rossol M">M Rossol</name>
</author>
<author>
<name sortKey="Pierer, M" uniqKey="Pierer M">M Pierer</name>
</author>
<author>
<name sortKey="Raulien, N" uniqKey="Raulien N">N Raulien</name>
</author>
<author>
<name sortKey="Quandt, D" uniqKey="Quandt D">D Quandt</name>
</author>
<author>
<name sortKey="Meusch, U" uniqKey="Meusch U">U Meusch</name>
</author>
<author>
<name sortKey="Rothe, K" uniqKey="Rothe K">K Rothe</name>
</author>
<author>
<name sortKey="Schubert, K" uniqKey="Schubert K">K Schubert</name>
</author>
<author>
<name sortKey="Schoneberg, T" uniqKey="Schoneberg T">T Schoneberg</name>
</author>
<author>
<name sortKey="Schaefer, M" uniqKey="Schaefer M">M Schaefer</name>
</author>
<author>
<name sortKey="Krugel, U" uniqKey="Krugel U">U Krugel</name>
</author>
<author>
<name sortKey="Smajilovic, S" uniqKey="Smajilovic S">S Smajilovic</name>
</author>
<author>
<name sortKey="Brauner Osborne, H" uniqKey="Brauner Osborne H">H Brauner-Osborne</name>
</author>
<author>
<name sortKey="Baerwald, C" uniqKey="Baerwald C">C Baerwald</name>
</author>
<author>
<name sortKey="Wagner, U" uniqKey="Wagner U">U Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oeckinghaus, A" uniqKey="Oeckinghaus A">A Oeckinghaus</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tabary, O" uniqKey="Tabary O">O Tabary</name>
</author>
<author>
<name sortKey="Boncoeur, E" uniqKey="Boncoeur E">E Boncoeur</name>
</author>
<author>
<name sortKey="De Martin, R" uniqKey="De Martin R">R de Martin</name>
</author>
<author>
<name sortKey="Pepperkok, R" uniqKey="Pepperkok R">R Pepperkok</name>
</author>
<author>
<name sortKey="Clement, A" uniqKey="Clement A">A Clement</name>
</author>
<author>
<name sortKey="Schultz, C" uniqKey="Schultz C">C Schultz</name>
</author>
<author>
<name sortKey="Jacquot, J" uniqKey="Jacquot J">J Jacquot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L Zhu</name>
</author>
<author>
<name sortKey="Song, S" uniqKey="Song S">S Song</name>
</author>
<author>
<name sortKey="Pi, Y" uniqKey="Pi Y">Y Pi</name>
</author>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="She, W" uniqKey="She W">W She</name>
</author>
<author>
<name sortKey="Ye, H" uniqKey="Ye H">H Ye</name>
</author>
<author>
<name sortKey="Su, Y" uniqKey="Su Y">Y Su</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokoseki, O" uniqKey="Yokoseki O">O Yokoseki</name>
</author>
<author>
<name sortKey="Suzuki, J" uniqKey="Suzuki J">J Suzuki</name>
</author>
<author>
<name sortKey="Kitabayashi, H" uniqKey="Kitabayashi H">H Kitabayashi</name>
</author>
<author>
<name sortKey="Watanabe, N" uniqKey="Watanabe N">N Watanabe</name>
</author>
<author>
<name sortKey="Wada, Y" uniqKey="Wada Y">Y Wada</name>
</author>
<author>
<name sortKey="Aoki, M" uniqKey="Aoki M">M Aoki</name>
</author>
<author>
<name sortKey="Morishita, R" uniqKey="Morishita R">R Morishita</name>
</author>
<author>
<name sortKey="Kaneda, Y" uniqKey="Kaneda Y">Y Kaneda</name>
</author>
<author>
<name sortKey="Ogihara, T" uniqKey="Ogihara T">T Ogihara</name>
</author>
<author>
<name sortKey="Futamatsu, H" uniqKey="Futamatsu H">H Futamatsu</name>
</author>
<author>
<name sortKey="Kobayashi, Y" uniqKey="Kobayashi Y">Y Kobayashi</name>
</author>
<author>
<name sortKey="Isobe, M" uniqKey="Isobe M">M Isobe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, H" uniqKey="Suzuki H">H Suzuki</name>
</author>
<author>
<name sortKey="Maehara, K" uniqKey="Maehara K">K Maehara</name>
</author>
<author>
<name sortKey="Yaoita, H" uniqKey="Yaoita H">H Yaoita</name>
</author>
<author>
<name sortKey="Maruyama, Y" uniqKey="Maruyama Y">Y Maruyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Murakami, M" uniqKey="Murakami M">M Murakami</name>
</author>
<author>
<name sortKey="Ohba, T" uniqKey="Ohba T">T Ohba</name>
</author>
<author>
<name sortKey="Radovanovic, M" uniqKey="Radovanovic M">M Radovanovic</name>
</author>
<author>
<name sortKey="Ono, K" uniqKey="Ono K">K Ono</name>
</author>
<author>
<name sortKey="Iijima, T" uniqKey="Iijima T">T Iijima</name>
</author>
<author>
<name sortKey="Ito, H" uniqKey="Ito H">H Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K Yang</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Jia, J" uniqKey="Jia J">J Jia</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Sweeney, M" uniqKey="Sweeney M">M Sweeney</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S Zhang</name>
</author>
<author>
<name sortKey="Platoshyn, O" uniqKey="Platoshyn O">O Platoshyn</name>
</author>
<author>
<name sortKey="Landsberg, J" uniqKey="Landsberg J">J Landsberg</name>
</author>
<author>
<name sortKey="Rothman, A" uniqKey="Rothman A">A Rothman</name>
</author>
<author>
<name sortKey="Yuan, Jx" uniqKey="Yuan J">JX Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abkhezr, M" uniqKey="Abkhezr M">M Abkhezr</name>
</author>
<author>
<name sortKey="Kim, Ey" uniqKey="Kim E">EY Kim</name>
</author>
<author>
<name sortKey="Roshanravan, H" uniqKey="Roshanravan H">H Roshanravan</name>
</author>
<author>
<name sortKey="Nikolos, F" uniqKey="Nikolos F">F Nikolos</name>
</author>
<author>
<name sortKey="Thomas, C" uniqKey="Thomas C">C Thomas</name>
</author>
<author>
<name sortKey="Hagmann, H" uniqKey="Hagmann H">H Hagmann</name>
</author>
<author>
<name sortKey="Benzing, T" uniqKey="Benzing T">T Benzing</name>
</author>
<author>
<name sortKey="Dryer, Se" uniqKey="Dryer S">SE Dryer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abkhezr, M" uniqKey="Abkhezr M">M Abkhezr</name>
</author>
<author>
<name sortKey="Dryer, Se" uniqKey="Dryer S">SE Dryer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
<author>
<name sortKey="Inoue, K" uniqKey="Inoue K">K Inoue</name>
</author>
<author>
<name sortKey="Leng, T" uniqKey="Leng T">T Leng</name>
</author>
<author>
<name sortKey="Guo, S" uniqKey="Guo S">S Guo</name>
</author>
<author>
<name sortKey="Xiong, Zg" uniqKey="Xiong Z">ZG Xiong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Fm" uniqKey="Davis F">FM Davis</name>
</author>
<author>
<name sortKey="Azimi, I" uniqKey="Azimi I">I Azimi</name>
</author>
<author>
<name sortKey="Faville, Ra" uniqKey="Faville R">RA Faville</name>
</author>
<author>
<name sortKey="Peters, Aa" uniqKey="Peters A">AA Peters</name>
</author>
<author>
<name sortKey="Jalink, K" uniqKey="Jalink K">K Jalink</name>
</author>
<author>
<name sortKey="Putney, Jw" uniqKey="Putney J">JW Putney</name>
</author>
<author>
<name sortKey="Goodhill, Gj" uniqKey="Goodhill G">GJ Goodhill</name>
</author>
<author>
<name sortKey="Thompson, Ew" uniqKey="Thompson E">EW Thompson</name>
</author>
<author>
<name sortKey="Roberts Thomson, Sj" uniqKey="Roberts Thomson S">SJ Roberts-Thomson</name>
</author>
<author>
<name sortKey="Monteith, Gr" uniqKey="Monteith G">GR Monteith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, M" uniqKey="Agrawal M">M Agrawal</name>
</author>
<author>
<name sortKey="Kumar, V" uniqKey="Kumar V">V Kumar</name>
</author>
<author>
<name sortKey="Singh, Ak" uniqKey="Singh A">AK Singh</name>
</author>
<author>
<name sortKey="Kashyap, Mp" uniqKey="Kashyap M">MP Kashyap</name>
</author>
<author>
<name sortKey="Khanna, Vk" uniqKey="Khanna V">VK Khanna</name>
</author>
<author>
<name sortKey="Siddiqui, Ma" uniqKey="Siddiqui M">MA Siddiqui</name>
</author>
<author>
<name sortKey="Pant, Ab" uniqKey="Pant A">AB Pant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinuesa, Ag" uniqKey="Vinuesa A">AG Vinuesa</name>
</author>
<author>
<name sortKey="Sancho, R" uniqKey="Sancho R">R Sancho</name>
</author>
<author>
<name sortKey="Garcia Limones, C" uniqKey="Garcia Limones C">C Garcia-Limones</name>
</author>
<author>
<name sortKey="Behrens, A" uniqKey="Behrens A">A Behrens</name>
</author>
<author>
<name sortKey="Ten Dijke, P" uniqKey="Ten Dijke P">P ten Dijke</name>
</author>
<author>
<name sortKey="Calzado, Ma" uniqKey="Calzado M">MA Calzado</name>
</author>
<author>
<name sortKey="Munoz, E" uniqKey="Munoz E">E Munoz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hussain, Sp" uniqKey="Hussain S">SP Hussain</name>
</author>
<author>
<name sortKey="Harris, Cc" uniqKey="Harris C">CC Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ouyang, X" uniqKey="Ouyang X">X Ouyang</name>
</author>
<author>
<name sortKey="Ghani, A" uniqKey="Ghani A">A Ghani</name>
</author>
<author>
<name sortKey="Malik, A" uniqKey="Malik A">A Malik</name>
</author>
<author>
<name sortKey="Wilder, T" uniqKey="Wilder T">T Wilder</name>
</author>
<author>
<name sortKey="Colegio, Or" uniqKey="Colegio O">OR Colegio</name>
</author>
<author>
<name sortKey="Flavell, Ra" uniqKey="Flavell R">RA Flavell</name>
</author>
<author>
<name sortKey="Cronstein, Bn" uniqKey="Cronstein B">BN Cronstein</name>
</author>
<author>
<name sortKey="Mehal, Wz" uniqKey="Mehal W">WZ Mehal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Yang, K" uniqKey="Yang K">K Yang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
<author>
<name sortKey="Jia, J" uniqKey="Jia J">J Jia</name>
</author>
<author>
<name sortKey="Yun, X" uniqKey="Yun X">X Yun</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
<author>
<name sortKey="Jiang, Q" uniqKey="Jiang Q">Q Jiang</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B Zhang</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asghar, My" uniqKey="Asghar M">MY Asghar</name>
</author>
<author>
<name sortKey="Magnusson, M" uniqKey="Magnusson M">M Magnusson</name>
</author>
<author>
<name sortKey="Kemppainen, K" uniqKey="Kemppainen K">K Kemppainen</name>
</author>
<author>
<name sortKey="Sukumaran, P" uniqKey="Sukumaran P">P Sukumaran</name>
</author>
<author>
<name sortKey="Lof, C" uniqKey="Lof C">C Lof</name>
</author>
<author>
<name sortKey="Pulli, I" uniqKey="Pulli I">I Pulli</name>
</author>
<author>
<name sortKey="Kalhori, V" uniqKey="Kalhori V">V Kalhori</name>
</author>
<author>
<name sortKey="Tornquist, K" uniqKey="Tornquist K">K Tornquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J Xie</name>
</author>
<author>
<name sortKey="Walton, Sc" uniqKey="Walton S">SC Walton</name>
</author>
<author>
<name sortKey="Mckown, Rl" uniqKey="Mckown R">RL McKown</name>
</author>
<author>
<name sortKey="Raab, Rw" uniqKey="Raab R">RW Raab</name>
</author>
<author>
<name sortKey="Ma, P" uniqKey="Ma P">P Ma</name>
</author>
<author>
<name sortKey="Beck, Sl" uniqKey="Beck S">SL Beck</name>
</author>
<author>
<name sortKey="Coffman, Gl" uniqKey="Coffman G">GL Coffman</name>
</author>
<author>
<name sortKey="Hussaini, Im" uniqKey="Hussaini I">IM Hussaini</name>
</author>
<author>
<name sortKey="Laurie, Gw" uniqKey="Laurie G">GW Laurie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, W" uniqKey="Chu W">W Chu</name>
</author>
<author>
<name sortKey="Wan, L" uniqKey="Wan L">L Wan</name>
</author>
<author>
<name sortKey="Zhao, D" uniqKey="Zhao D">D Zhao</name>
</author>
<author>
<name sortKey="Qu, X" uniqKey="Qu X">X Qu</name>
</author>
<author>
<name sortKey="Cai, F" uniqKey="Cai F">F Cai</name>
</author>
<author>
<name sortKey="Huo, R" uniqKey="Huo R">R Huo</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J Zhu</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Zheng, F" uniqKey="Zheng F">F Zheng</name>
</author>
<author>
<name sortKey="Cai, R" uniqKey="Cai R">R Cai</name>
</author>
<author>
<name sortKey="Dong, D" uniqKey="Dong D">D Dong</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y Lu</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Pan, Q" uniqKey="Pan Q">Q Pan</name>
</author>
<author>
<name sortKey="Meng, H" uniqKey="Meng H">H Meng</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Mao, A" uniqKey="Mao A">A Mao</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
<author>
<name sortKey="Hua, D" uniqKey="Hua D">D Hua</name>
</author>
<author>
<name sortKey="Yao, X" uniqKey="Yao X">X Yao</name>
</author>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J Jin</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Ding, X" uniqKey="Ding X">X Ding</name>
</author>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B Dong</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iyer, Sc" uniqKey="Iyer S">SC Iyer</name>
</author>
<author>
<name sortKey="Kannan, A" uniqKey="Kannan A">A Kannan</name>
</author>
<author>
<name sortKey="Gopal, A" uniqKey="Gopal A">A Gopal</name>
</author>
<author>
<name sortKey="Devaraj, N" uniqKey="Devaraj N">N Devaraj</name>
</author>
<author>
<name sortKey="Halagowder, D" uniqKey="Halagowder D">D Halagowder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Ba" uniqKey="Miller B">BA Miller</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Hirschler Laszkiewicz, I" uniqKey="Hirschler Laszkiewicz I">I Hirschler-Laszkiewicz</name>
</author>
<author>
<name sortKey="Gao, E" uniqKey="Gao E">E Gao</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J Song</name>
</author>
<author>
<name sortKey="Zhang, Xq" uniqKey="Zhang X">XQ Zhang</name>
</author>
<author>
<name sortKey="Koch, Wj" uniqKey="Koch W">WJ Koch</name>
</author>
<author>
<name sortKey="Madesh, M" uniqKey="Madesh M">M Madesh</name>
</author>
<author>
<name sortKey="Mallilankaraman, K" uniqKey="Mallilankaraman K">K Mallilankaraman</name>
</author>
<author>
<name sortKey="Gu, T" uniqKey="Gu T">T Gu</name>
</author>
<author>
<name sortKey="Chen, Sj" uniqKey="Chen S">SJ Chen</name>
</author>
<author>
<name sortKey="Keefer, K" uniqKey="Keefer K">K Keefer</name>
</author>
<author>
<name sortKey="Conrad, K" uniqKey="Conrad K">K Conrad</name>
</author>
<author>
<name sortKey="Feldman, Am" uniqKey="Feldman A">AM Feldman</name>
</author>
<author>
<name sortKey="Cheung, Jy" uniqKey="Cheung J">JY Cheung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoolmeesters, A" uniqKey="Schoolmeesters A">A Schoolmeesters</name>
</author>
<author>
<name sortKey="Brown, Dd" uniqKey="Brown D">DD Brown</name>
</author>
<author>
<name sortKey="Fedorov, Y" uniqKey="Fedorov Y">Y Fedorov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, A" uniqKey="Rao A">A Rao</name>
</author>
<author>
<name sortKey="Luo, C" uniqKey="Luo C">C Luo</name>
</author>
<author>
<name sortKey="Hogan, Pg" uniqKey="Hogan P">PG Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandewalle, A" uniqKey="Vandewalle A">A Vandewalle</name>
</author>
<author>
<name sortKey="Tourneur, E" uniqKey="Tourneur E">E Tourneur</name>
</author>
<author>
<name sortKey="Bens, M" uniqKey="Bens M">M Bens</name>
</author>
<author>
<name sortKey="Chassin, C" uniqKey="Chassin C">C Chassin</name>
</author>
<author>
<name sortKey="Werts, C" uniqKey="Werts C">C Werts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, R" uniqKey="Inoue R">R Inoue</name>
</author>
<author>
<name sortKey="Jensen, Lj" uniqKey="Jensen L">LJ Jensen</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
<author>
<name sortKey="Morita, H" uniqKey="Morita H">H Morita</name>
</author>
<author>
<name sortKey="Nishida, M" uniqKey="Nishida M">M Nishida</name>
</author>
<author>
<name sortKey="Honda, A" uniqKey="Honda A">A Honda</name>
</author>
<author>
<name sortKey="Ito, Y" uniqKey="Ito Y">Y Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishida, M" uniqKey="Nishida M">M Nishida</name>
</author>
<author>
<name sortKey="Kurose, H" uniqKey="Kurose H">H Kurose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eder, P" uniqKey="Eder P">P Eder</name>
</author>
<author>
<name sortKey="Molkentin, Jd" uniqKey="Molkentin J">JD Molkentin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kockx, M" uniqKey="Kockx M">M Kockx</name>
</author>
<author>
<name sortKey="Jessup, W" uniqKey="Jessup W">W Jessup</name>
</author>
<author>
<name sortKey="Kritharides, L" uniqKey="Kritharides L">L Kritharides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zetterqvist, Av" uniqKey="Zetterqvist A">AV Zetterqvist</name>
</author>
<author>
<name sortKey="Berglund, Lm" uniqKey="Berglund L">LM Berglund</name>
</author>
<author>
<name sortKey="Blanco, F" uniqKey="Blanco F">F Blanco</name>
</author>
<author>
<name sortKey="Garcia Vaz, E" uniqKey="Garcia Vaz E">E Garcia-Vaz</name>
</author>
<author>
<name sortKey="Wigren, M" uniqKey="Wigren M">M Wigren</name>
</author>
<author>
<name sortKey="Duner, P" uniqKey="Duner P">P Duner</name>
</author>
<author>
<name sortKey="Andersson, Am" uniqKey="Andersson A">AM Andersson</name>
</author>
<author>
<name sortKey="To, F" uniqKey="To F">F To</name>
</author>
<author>
<name sortKey="Spegel, P" uniqKey="Spegel P">P Spegel</name>
</author>
<author>
<name sortKey="Nilsson, J" uniqKey="Nilsson J">J Nilsson</name>
</author>
<author>
<name sortKey="Bengtsson, E" uniqKey="Bengtsson E">E Bengtsson</name>
</author>
<author>
<name sortKey="Gomez, Mf" uniqKey="Gomez M">MF Gomez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abkhezr, M" uniqKey="Abkhezr M">M Abkhezr</name>
</author>
<author>
<name sortKey="Kim, Ey" uniqKey="Kim E">EY Kim</name>
</author>
<author>
<name sortKey="Roshanravan, H" uniqKey="Roshanravan H">H Roshanravan</name>
</author>
<author>
<name sortKey="Nikolos, F" uniqKey="Nikolos F">F Nikolos</name>
</author>
<author>
<name sortKey="Thomas, C" uniqKey="Thomas C">C Thomas</name>
</author>
<author>
<name sortKey="Hagmann, H" uniqKey="Hagmann H">H Hagmann</name>
</author>
<author>
<name sortKey="Benzing, T" uniqKey="Benzing T">T Benzing</name>
</author>
<author>
<name sortKey="Dryer, Se" uniqKey="Dryer S">SE Dryer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makarewich, Ca" uniqKey="Makarewich C">CA Makarewich</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Davis, J" uniqKey="Davis J">J Davis</name>
</author>
<author>
<name sortKey="Correll, Rn" uniqKey="Correll R">RN Correll</name>
</author>
<author>
<name sortKey="Trappanese, Dm" uniqKey="Trappanese D">DM Trappanese</name>
</author>
<author>
<name sortKey="Hoffman, Ne" uniqKey="Hoffman N">NE Hoffman</name>
</author>
<author>
<name sortKey="Troupes, Cd" uniqKey="Troupes C">CD Troupes</name>
</author>
<author>
<name sortKey="Berretta, Rm" uniqKey="Berretta R">RM Berretta</name>
</author>
<author>
<name sortKey="Kubo, H" uniqKey="Kubo H">H Kubo</name>
</author>
<author>
<name sortKey="Madesh, M" uniqKey="Madesh M">M Madesh</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Gao, E" uniqKey="Gao E">E Gao</name>
</author>
<author>
<name sortKey="Molkentin, Jd" uniqKey="Molkentin J">JD Molkentin</name>
</author>
<author>
<name sortKey="Houser, Sr" uniqKey="Houser S">SR Houser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Libby, P" uniqKey="Libby P">P Libby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vassalli, G" uniqKey="Vassalli G">G Vassalli</name>
</author>
<author>
<name sortKey="Gallino, A" uniqKey="Gallino A">A Gallino</name>
</author>
<author>
<name sortKey="Weis, M" uniqKey="Weis M">M Weis</name>
</author>
<author>
<name sortKey="Von Scheidt, W" uniqKey="Von Scheidt W">W von Scheidt</name>
</author>
<author>
<name sortKey="Kappenberger, L" uniqKey="Kappenberger L">L Kappenberger</name>
</author>
<author>
<name sortKey="Von Segesser, Lk" uniqKey="Von Segesser L">LK von Segesser</name>
</author>
<author>
<name sortKey="Goy, Jj" uniqKey="Goy J">JJ Goy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Ruiz, F" uniqKey="Perez Ruiz F">F Perez-Ruiz</name>
</author>
<author>
<name sortKey="Becker, Ma" uniqKey="Becker M">MA Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frieler, Ra" uniqKey="Frieler R">RA Frieler</name>
</author>
<author>
<name sortKey="Mortensen, Rm" uniqKey="Mortensen R">RM Mortensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, T" uniqKey="Yamashita T">T Yamashita</name>
</author>
<author>
<name sortKey="Sasaki, N" uniqKey="Sasaki N">N Sasaki</name>
</author>
<author>
<name sortKey="Kasahara, K" uniqKey="Kasahara K">K Kasahara</name>
</author>
<author>
<name sortKey="Hirata, K" uniqKey="Hirata K">K Hirata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, Mu" uniqKey="Nguyen M">MU Nguyen</name>
</author>
<author>
<name sortKey="Wallace, Mj" uniqKey="Wallace M">MJ Wallace</name>
</author>
<author>
<name sortKey="Pepe, S" uniqKey="Pepe S">S Pepe</name>
</author>
<author>
<name sortKey="Menheniott, Tr" uniqKey="Menheniott T">TR Menheniott</name>
</author>
<author>
<name sortKey="Moss, Tj" uniqKey="Moss T">TJ Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hollan, I" uniqKey="Hollan I">I Hollan</name>
</author>
<author>
<name sortKey="Dessein, Ph" uniqKey="Dessein P">PH Dessein</name>
</author>
<author>
<name sortKey="Ronda, N" uniqKey="Ronda N">N Ronda</name>
</author>
<author>
<name sortKey="Wasko, Mc" uniqKey="Wasko M">MC Wasko</name>
</author>
<author>
<name sortKey="Svenungsson, E" uniqKey="Svenungsson E">E Svenungsson</name>
</author>
<author>
<name sortKey="Agewall, S" uniqKey="Agewall S">S Agewall</name>
</author>
<author>
<name sortKey="Cohen Tervaert, Jw" uniqKey="Cohen Tervaert J">JW Cohen-Tervaert</name>
</author>
<author>
<name sortKey="Maki Petaja, K" uniqKey="Maki Petaja K">K Maki-Petaja</name>
</author>
<author>
<name sortKey="Grundtvig, M" uniqKey="Grundtvig M">M Grundtvig</name>
</author>
<author>
<name sortKey="Karpouzas, Ga" uniqKey="Karpouzas G">GA Karpouzas</name>
</author>
<author>
<name sortKey="Meroni, Pl" uniqKey="Meroni P">PL Meroni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, Z" uniqKey="Qiu Z">Z Qiu</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J Hu</name>
</author>
<author>
<name sortKey="Van Den Steen, Pe" uniqKey="Van Den Steen P">PE Van den Steen</name>
</author>
<author>
<name sortKey="Opdenakker, G" uniqKey="Opdenakker G">G Opdenakker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxena, A" uniqKey="Saxena A">A Saxena</name>
</author>
<author>
<name sortKey="Russo, I" uniqKey="Russo I">I Russo</name>
</author>
<author>
<name sortKey="Frangogiannis, Ng" uniqKey="Frangogiannis N">NG Frangogiannis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilahur, G" uniqKey="Vilahur G">G Vilahur</name>
</author>
<author>
<name sortKey="Badimon, L" uniqKey="Badimon L">L Badimon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergdahl, A" uniqKey="Bergdahl A">A Bergdahl</name>
</author>
<author>
<name sortKey="Gomez, Mf" uniqKey="Gomez M">MF Gomez</name>
</author>
<author>
<name sortKey="Wihlborg, Ak" uniqKey="Wihlborg A">AK Wihlborg</name>
</author>
<author>
<name sortKey="Erlinge, D" uniqKey="Erlinge D">D Erlinge</name>
</author>
<author>
<name sortKey="Eyjolfson, A" uniqKey="Eyjolfson A">A Eyjolfson</name>
</author>
<author>
<name sortKey="Xu, Sz" uniqKey="Xu S">SZ Xu</name>
</author>
<author>
<name sortKey="Beech, Dj" uniqKey="Beech D">DJ Beech</name>
</author>
<author>
<name sortKey="Dreja, K" uniqKey="Dreja K">K Dreja</name>
</author>
<author>
<name sortKey="Hellstrand, P" uniqKey="Hellstrand P">P Hellstrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, Jm" uniqKey="Edwards J">JM Edwards</name>
</author>
<author>
<name sortKey="Neeb, Zp" uniqKey="Neeb Z">ZP Neeb</name>
</author>
<author>
<name sortKey="Alloosh, Ma" uniqKey="Alloosh M">MA Alloosh</name>
</author>
<author>
<name sortKey="Long, X" uniqKey="Long X">X Long</name>
</author>
<author>
<name sortKey="Bratz, In" uniqKey="Bratz I">IN Bratz</name>
</author>
<author>
<name sortKey="Peller, Cr" uniqKey="Peller C">CR Peller</name>
</author>
<author>
<name sortKey="Byrd, Jp" uniqKey="Byrd J">JP Byrd</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Obukhov, Ag" uniqKey="Obukhov A">AG Obukhov</name>
</author>
<author>
<name sortKey="Sturek, M" uniqKey="Sturek M">M Sturek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smedlund, K" uniqKey="Smedlund K">K Smedlund</name>
</author>
<author>
<name sortKey="Vazquez, G" uniqKey="Vazquez G">G Vazquez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smedlund, Kb" uniqKey="Smedlund K">KB Smedlund</name>
</author>
<author>
<name sortKey="Birnbaumer, L" uniqKey="Birnbaumer L">L Birnbaumer</name>
</author>
<author>
<name sortKey="Vazquez, G" uniqKey="Vazquez G">G Vazquez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaudhuri, P" uniqKey="Chaudhuri P">P Chaudhuri</name>
</author>
<author>
<name sortKey="Colles, Sm" uniqKey="Colles S">SM Colles</name>
</author>
<author>
<name sortKey="Bhat, M" uniqKey="Bhat M">M Bhat</name>
</author>
<author>
<name sortKey="Van Wagoner, Dr" uniqKey="Van Wagoner D">DR Van Wagoner</name>
</author>
<author>
<name sortKey="Birnbaumer, L" uniqKey="Birnbaumer L">L Birnbaumer</name>
</author>
<author>
<name sortKey="Graham, Lm" uniqKey="Graham L">LM Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Qin, W" uniqKey="Qin W">W Qin</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X Wu</name>
</author>
<author>
<name sortKey="Du, N" uniqKey="Du N">N Du</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Shen, N" uniqKey="Shen N">N Shen</name>
</author>
<author>
<name sortKey="Xiao, D" uniqKey="Xiao D">D Xiao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Du, Z" uniqKey="Du Z">Z Du</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilling, T" uniqKey="Schilling T">T Schilling</name>
</author>
<author>
<name sortKey="Eder, C" uniqKey="Eder C">C Eder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Himi, N" uniqKey="Himi N">N Himi</name>
</author>
<author>
<name sortKey="Hamaguchi, A" uniqKey="Hamaguchi A">A Hamaguchi</name>
</author>
<author>
<name sortKey="Hashimoto, K" uniqKey="Hashimoto K">K Hashimoto</name>
</author>
<author>
<name sortKey="Koga, T" uniqKey="Koga T">T Koga</name>
</author>
<author>
<name sortKey="Narita, K" uniqKey="Narita K">K Narita</name>
</author>
<author>
<name sortKey="Miyamoto, O" uniqKey="Miyamoto O">O Miyamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Bh" uniqKey="Li B">BH Li</name>
</author>
<author>
<name sortKey="Yin, Yw" uniqKey="Yin Y">YW Yin</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Pi, Y" uniqKey="Pi Y">Y Pi</name>
</author>
<author>
<name sortKey="Guo, L" uniqKey="Guo L">L Guo</name>
</author>
<author>
<name sortKey="Cao, Xj" uniqKey="Cao X">XJ Cao</name>
</author>
<author>
<name sortKey="Gao, Cy" uniqKey="Gao C">CY Gao</name>
</author>
<author>
<name sortKey="Zhang, Ll" uniqKey="Zhang L">LL Zhang</name>
</author>
<author>
<name sortKey="Li, Jc" uniqKey="Li J">JC Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ching, Lc" uniqKey="Ching L">LC Ching</name>
</author>
<author>
<name sortKey="Kou, Yr" uniqKey="Kou Y">YR Kou</name>
</author>
<author>
<name sortKey="Shyue, Sk" uniqKey="Shyue S">SK Shyue</name>
</author>
<author>
<name sortKey="Su, Kh" uniqKey="Su K">KH Su</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J Wei</name>
</author>
<author>
<name sortKey="Cheng, Lc" uniqKey="Cheng L">LC Cheng</name>
</author>
<author>
<name sortKey="Yu, Yb" uniqKey="Yu Y">YB Yu</name>
</author>
<author>
<name sortKey="Pan, Cc" uniqKey="Pan C">CC Pan</name>
</author>
<author>
<name sortKey="Lee, Ts" uniqKey="Lee T">TS Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Jf" uniqKey="Zhao J">JF Zhao</name>
</author>
<author>
<name sortKey="Ching, Lc" uniqKey="Ching L">LC Ching</name>
</author>
<author>
<name sortKey="Kou, Yr" uniqKey="Kou Y">YR Kou</name>
</author>
<author>
<name sortKey="Lin, Sj" uniqKey="Lin S">SJ Lin</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J Wei</name>
</author>
<author>
<name sortKey="Shyue, Sk" uniqKey="Shyue S">SK Shyue</name>
</author>
<author>
<name sortKey="Lee, Ts" uniqKey="Lee T">TS Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, B" uniqKey="Kumar B">B Kumar</name>
</author>
<author>
<name sortKey="Dreja, K" uniqKey="Dreja K">K Dreja</name>
</author>
<author>
<name sortKey="Shah, Ss" uniqKey="Shah S">SS Shah</name>
</author>
<author>
<name sortKey="Cheong, A" uniqKey="Cheong A">A Cheong</name>
</author>
<author>
<name sortKey="Xu, Sz" uniqKey="Xu S">SZ Xu</name>
</author>
<author>
<name sortKey="Sukumar, P" uniqKey="Sukumar P">P Sukumar</name>
</author>
<author>
<name sortKey="Naylor, J" uniqKey="Naylor J">J Naylor</name>
</author>
<author>
<name sortKey="Forte, A" uniqKey="Forte A">A Forte</name>
</author>
<author>
<name sortKey="Cipollaro, M" uniqKey="Cipollaro M">M Cipollaro</name>
</author>
<author>
<name sortKey="Mchugh, D" uniqKey="Mchugh D">D McHugh</name>
</author>
<author>
<name sortKey="Kingston, Pa" uniqKey="Kingston P">PA Kingston</name>
</author>
<author>
<name sortKey="Heagerty, Am" uniqKey="Heagerty A">AM Heagerty</name>
</author>
<author>
<name sortKey="Munsch, Cm" uniqKey="Munsch C">CM Munsch</name>
</author>
<author>
<name sortKey="Bergdahl, A" uniqKey="Bergdahl A">A Bergdahl</name>
</author>
<author>
<name sortKey="Hultgardh Nilsson, A" uniqKey="Hultgardh Nilsson A">A Hultgardh-Nilsson</name>
</author>
<author>
<name sortKey="Gomez, Mf" uniqKey="Gomez M">MF Gomez</name>
</author>
<author>
<name sortKey="Porter, Ke" uniqKey="Porter K">KE Porter</name>
</author>
<author>
<name sortKey="Hellstrand, P" uniqKey="Hellstrand P">P Hellstrand</name>
</author>
<author>
<name sortKey="Beech, Dj" uniqKey="Beech D">DJ Beech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ru, X" uniqKey="Ru X">X Ru</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C Zheng</name>
</author>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q Zhao</name>
</author>
<author>
<name sortKey="Lan, Hy" uniqKey="Lan H">HY Lan</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Wan, S" uniqKey="Wan S">S Wan</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Yao, X" uniqKey="Yao X">X Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, A" uniqKey="Xie A">A Xie</name>
</author>
<author>
<name sortKey="Aihara, Y" uniqKey="Aihara Y">Y Aihara</name>
</author>
<author>
<name sortKey="Bouryi, Va" uniqKey="Bouryi V">VA Bouryi</name>
</author>
<author>
<name sortKey="Nikitina, E" uniqKey="Nikitina E">E Nikitina</name>
</author>
<author>
<name sortKey="Jahromi, Bs" uniqKey="Jahromi B">BS Jahromi</name>
</author>
<author>
<name sortKey="Zhang, Zd" uniqKey="Zhang Z">ZD Zhang</name>
</author>
<author>
<name sortKey="Takahashi, M" uniqKey="Takahashi M">M Takahashi</name>
</author>
<author>
<name sortKey="Macdonald, Rl" uniqKey="Macdonald R">RL Macdonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akabori, H" uniqKey="Akabori H">H Akabori</name>
</author>
<author>
<name sortKey="Yamamoto, H" uniqKey="Yamamoto H">H Yamamoto</name>
</author>
<author>
<name sortKey="Tsuchihashi, H" uniqKey="Tsuchihashi H">H Tsuchihashi</name>
</author>
<author>
<name sortKey="Mori, T" uniqKey="Mori T">T Mori</name>
</author>
<author>
<name sortKey="Fujino, K" uniqKey="Fujino K">K Fujino</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
<author>
<name sortKey="Endo, Y" uniqKey="Endo Y">Y Endo</name>
</author>
<author>
<name sortKey="Tani, T" uniqKey="Tani T">T Tani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Ia" uniqKey="Williams I">IA Williams</name>
</author>
<author>
<name sortKey="Allen, Dg" uniqKey="Allen D">DG Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedman, Jk" uniqKey="Friedman J">JK Friedman</name>
</author>
<author>
<name sortKey="Nitta, Ch" uniqKey="Nitta C">CH Nitta</name>
</author>
<author>
<name sortKey="Henderson, Km" uniqKey="Henderson K">KM Henderson</name>
</author>
<author>
<name sortKey="Codianni, Sj" uniqKey="Codianni S">SJ Codianni</name>
</author>
<author>
<name sortKey="Sanchez, L" uniqKey="Sanchez L">L Sanchez</name>
</author>
<author>
<name sortKey="Ramiro Diaz, Jm" uniqKey="Ramiro Diaz J">JM Ramiro-Diaz</name>
</author>
<author>
<name sortKey="Howard, Ta" uniqKey="Howard T">TA Howard</name>
</author>
<author>
<name sortKey="Giermakowska, W" uniqKey="Giermakowska W">W Giermakowska</name>
</author>
<author>
<name sortKey="Kanagy, Nl" uniqKey="Kanagy N">NL Kanagy</name>
</author>
<author>
<name sortKey="Gonzalez Bosc, Lv" uniqKey="Gonzalez Bosc L">LV Gonzalez Bosc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seth, M" uniqKey="Seth M">M Seth</name>
</author>
<author>
<name sortKey="Zhang, Zs" uniqKey="Zhang Z">ZS Zhang</name>
</author>
<author>
<name sortKey="Mao, L" uniqKey="Mao L">L Mao</name>
</author>
<author>
<name sortKey="Graham, V" uniqKey="Graham V">V Graham</name>
</author>
<author>
<name sortKey="Burch, J" uniqKey="Burch J">J Burch</name>
</author>
<author>
<name sortKey="Stiber, J" uniqKey="Stiber J">J Stiber</name>
</author>
<author>
<name sortKey="Tsiokas, L" uniqKey="Tsiokas L">L Tsiokas</name>
</author>
<author>
<name sortKey="Winn, M" uniqKey="Winn M">M Winn</name>
</author>
<author>
<name sortKey="Abramowitz, J" uniqKey="Abramowitz J">J Abramowitz</name>
</author>
<author>
<name sortKey="Rockman, Ha" uniqKey="Rockman H">HA Rockman</name>
</author>
<author>
<name sortKey="Birnbaumer, L" uniqKey="Birnbaumer L">L Birnbaumer</name>
</author>
<author>
<name sortKey="Rosenberg, P" uniqKey="Rosenberg P">P Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vindis, C" uniqKey="Vindis C">C Vindis</name>
</author>
<author>
<name sortKey="D Ngelo, R" uniqKey="D Ngelo R">R D’Angelo</name>
</author>
<author>
<name sortKey="Mucher, E" uniqKey="Mucher E">E Mucher</name>
</author>
<author>
<name sortKey="Negre Salvayre, A" uniqKey="Negre Salvayre A">A Negre-Salvayre</name>
</author>
<author>
<name sortKey="Parini, A" uniqKey="Parini A">A Parini</name>
</author>
<author>
<name sortKey="Mialet Perez, J" uniqKey="Mialet Perez J">J Mialet-Perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitajima, N" uniqKey="Kitajima N">N Kitajima</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K Watanabe</name>
</author>
<author>
<name sortKey="Morimoto, S" uniqKey="Morimoto S">S Morimoto</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Kiyonaka, S" uniqKey="Kiyonaka S">S Kiyonaka</name>
</author>
<author>
<name sortKey="Hoshijima, M" uniqKey="Hoshijima M">M Hoshijima</name>
</author>
<author>
<name sortKey="Ikeda, Y" uniqKey="Ikeda Y">Y Ikeda</name>
</author>
<author>
<name sortKey="Nakaya, M" uniqKey="Nakaya M">M Nakaya</name>
</author>
<author>
<name sortKey="Ide, T" uniqKey="Ide T">T Ide</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Kurose, H" uniqKey="Kurose H">H Kurose</name>
</author>
<author>
<name sortKey="Nishida, M" uniqKey="Nishida M">M Nishida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sowa, N" uniqKey="Sowa N">N Sowa</name>
</author>
<author>
<name sortKey="Horie, T" uniqKey="Horie T">T Horie</name>
</author>
<author>
<name sortKey="Kuwabara, Y" uniqKey="Kuwabara Y">Y Kuwabara</name>
</author>
<author>
<name sortKey="Baba, O" uniqKey="Baba O">O Baba</name>
</author>
<author>
<name sortKey="Watanabe, S" uniqKey="Watanabe S">S Watanabe</name>
</author>
<author>
<name sortKey="Nishi, H" uniqKey="Nishi H">H Nishi</name>
</author>
<author>
<name sortKey="Kinoshita, M" uniqKey="Kinoshita M">M Kinoshita</name>
</author>
<author>
<name sortKey="Takanabe Mori, R" uniqKey="Takanabe Mori R">R Takanabe-Mori</name>
</author>
<author>
<name sortKey="Wada, H" uniqKey="Wada H">H Wada</name>
</author>
<author>
<name sortKey="Shimatsu, A" uniqKey="Shimatsu A">A Shimatsu</name>
</author>
<author>
<name sortKey="Hasegawa, K" uniqKey="Hasegawa K">K Hasegawa</name>
</author>
<author>
<name sortKey="Kimura, T" uniqKey="Kimura T">T Kimura</name>
</author>
<author>
<name sortKey="Ono, K" uniqKey="Ono K">K Ono</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bush, Ew" uniqKey="Bush E">EW Bush</name>
</author>
<author>
<name sortKey="Hood, Db" uniqKey="Hood D">DB Hood</name>
</author>
<author>
<name sortKey="Papst, Pj" uniqKey="Papst P">PJ Papst</name>
</author>
<author>
<name sortKey="Chapo, Ja" uniqKey="Chapo J">JA Chapo</name>
</author>
<author>
<name sortKey="Minobe, W" uniqKey="Minobe W">W Minobe</name>
</author>
<author>
<name sortKey="Bristow, Mr" uniqKey="Bristow M">MR Bristow</name>
</author>
<author>
<name sortKey="Olson, En" uniqKey="Olson E">EN Olson</name>
</author>
<author>
<name sortKey="Mckinsey, Ta" uniqKey="Mckinsey T">TA McKinsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onohara, N" uniqKey="Onohara N">N Onohara</name>
</author>
<author>
<name sortKey="Nishida, M" uniqKey="Nishida M">M Nishida</name>
</author>
<author>
<name sortKey="Inoue, R" uniqKey="Inoue R">R Inoue</name>
</author>
<author>
<name sortKey="Kobayashi, H" uniqKey="Kobayashi H">H Kobayashi</name>
</author>
<author>
<name sortKey="Sumimoto, H" uniqKey="Sumimoto H">H Sumimoto</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Nagao, T" uniqKey="Nagao T">T Nagao</name>
</author>
<author>
<name sortKey="Kurose, H" uniqKey="Kurose H">H Kurose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuwahara, K" uniqKey="Kuwahara K">K Kuwahara</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Mcanally, J" uniqKey="Mcanally J">J McAnally</name>
</author>
<author>
<name sortKey="Richardson, Ja" uniqKey="Richardson J">JA Richardson</name>
</author>
<author>
<name sortKey="Bassel Duby, R" uniqKey="Bassel Duby R">R Bassel-Duby</name>
</author>
<author>
<name sortKey="Hill, Ja" uniqKey="Hill J">JA Hill</name>
</author>
<author>
<name sortKey="Olson, En" uniqKey="Olson E">EN Olson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinoshita, H" uniqKey="Kinoshita H">H Kinoshita</name>
</author>
<author>
<name sortKey="Kuwahara, K" uniqKey="Kuwahara K">K Kuwahara</name>
</author>
<author>
<name sortKey="Nishida, M" uniqKey="Nishida M">M Nishida</name>
</author>
<author>
<name sortKey="Jian, Z" uniqKey="Jian Z">Z Jian</name>
</author>
<author>
<name sortKey="Rong, X" uniqKey="Rong X">X Rong</name>
</author>
<author>
<name sortKey="Kiyonaka, S" uniqKey="Kiyonaka S">S Kiyonaka</name>
</author>
<author>
<name sortKey="Kuwabara, Y" uniqKey="Kuwabara Y">Y Kuwabara</name>
</author>
<author>
<name sortKey="Kurose, H" uniqKey="Kurose H">H Kurose</name>
</author>
<author>
<name sortKey="Inoue, R" uniqKey="Inoue R">R Inoue</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Nakagawa, Y" uniqKey="Nakagawa Y">Y Nakagawa</name>
</author>
<author>
<name sortKey="Usami, S" uniqKey="Usami S">S Usami</name>
</author>
<author>
<name sortKey="Fujiwara, M" uniqKey="Fujiwara M">M Fujiwara</name>
</author>
<author>
<name sortKey="Yamada, Y" uniqKey="Yamada Y">Y Yamada</name>
</author>
<author>
<name sortKey="Minami, T" uniqKey="Minami T">T Minami</name>
</author>
<author>
<name sortKey="Ueshima, K" uniqKey="Ueshima K">K Ueshima</name>
</author>
<author>
<name sortKey="Nakao, K" uniqKey="Nakao K">K Nakao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kunert Keil, C" uniqKey="Kunert Keil C">C Kunert-Keil</name>
</author>
<author>
<name sortKey="Landsberger, M" uniqKey="Landsberger M">M Landsberger</name>
</author>
<author>
<name sortKey="Jantzen, F" uniqKey="Jantzen F">F Jantzen</name>
</author>
<author>
<name sortKey="Niessner, F" uniqKey="Niessner F">F Niessner</name>
</author>
<author>
<name sortKey="Kroemer, Hk" uniqKey="Kroemer H">HK Kroemer</name>
</author>
<author>
<name sortKey="Felix, Sb" uniqKey="Felix S">SB Felix</name>
</author>
<author>
<name sortKey="Brinkmeier, H" uniqKey="Brinkmeier H">H Brinkmeier</name>
</author>
<author>
<name sortKey="Peters, J" uniqKey="Peters J">J Peters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F Gao</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y Liang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Lu, Z" uniqKey="Lu Z">Z Lu</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S Zhu</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D Liu</name>
</author>
<author>
<name sortKey="Yan, Z" uniqKey="Yan Z">Z Yan</name>
</author>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Ma, S" uniqKey="Ma S">S Ma</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Tang, B" uniqKey="Tang B">B Tang</name>
</author>
<author>
<name sortKey="Qiu, C" uniqKey="Qiu C">C Qiu</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwata, Y" uniqKey="Iwata Y">Y Iwata</name>
</author>
<author>
<name sortKey="Ohtake, H" uniqKey="Ohtake H">H Ohtake</name>
</author>
<author>
<name sortKey="Suzuki, O" uniqKey="Suzuki O">O Suzuki</name>
</author>
<author>
<name sortKey="Matsuda, J" uniqKey="Matsuda J">J Matsuda</name>
</author>
<author>
<name sortKey="Komamura, K" uniqKey="Komamura K">K Komamura</name>
</author>
<author>
<name sortKey="Wakabayashi, S" uniqKey="Wakabayashi S">S Wakabayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demion, M" uniqKey="Demion M">M Demion</name>
</author>
<author>
<name sortKey="Thireau, J" uniqKey="Thireau J">J Thireau</name>
</author>
<author>
<name sortKey="Gueffier, M" uniqKey="Gueffier M">M Gueffier</name>
</author>
<author>
<name sortKey="Finan, A" uniqKey="Finan A">A Finan</name>
</author>
<author>
<name sortKey="Khoueiry, Z" uniqKey="Khoueiry Z">Z Khoueiry</name>
</author>
<author>
<name sortKey="Cassan, C" uniqKey="Cassan C">C Cassan</name>
</author>
<author>
<name sortKey="Serafini, N" uniqKey="Serafini N">N Serafini</name>
</author>
<author>
<name sortKey="Aimond, F" uniqKey="Aimond F">F Aimond</name>
</author>
<author>
<name sortKey="Granier, M" uniqKey="Granier M">M Granier</name>
</author>
<author>
<name sortKey="Pasquie, Jl" uniqKey="Pasquie J">JL Pasquie</name>
</author>
<author>
<name sortKey="Launay, P" uniqKey="Launay P">P Launay</name>
</author>
<author>
<name sortKey="Richard, S" uniqKey="Richard S">S Richard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kecskes, M" uniqKey="Kecskes M">M Kecskes</name>
</author>
<author>
<name sortKey="Jacobs, G" uniqKey="Jacobs G">G Jacobs</name>
</author>
<author>
<name sortKey="Kerselaers, S" uniqKey="Kerselaers S">S Kerselaers</name>
</author>
<author>
<name sortKey="Syam, N" uniqKey="Syam N">N Syam</name>
</author>
<author>
<name sortKey="Menigoz, A" uniqKey="Menigoz A">A Menigoz</name>
</author>
<author>
<name sortKey="Vangheluwe, P" uniqKey="Vangheluwe P">P Vangheluwe</name>
</author>
<author>
<name sortKey="Freichel, M" uniqKey="Freichel M">M Freichel</name>
</author>
<author>
<name sortKey="Flockerzi, V" uniqKey="Flockerzi V">V Flockerzi</name>
</author>
<author>
<name sortKey="Voets, T" uniqKey="Voets T">T Voets</name>
</author>
<author>
<name sortKey="Vennekens, R" uniqKey="Vennekens R">R Vennekens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hang, P" uniqKey="Hang P">P Hang</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B Cai</name>
</author>
<author>
<name sortKey="Tian, S" uniqKey="Tian S">S Tian</name>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W Huang</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J Guo</name>
</author>
<author>
<name sortKey="Sun, C" uniqKey="Sun C">C Sun</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Du, Z" uniqKey="Du Z">Z Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobs, G" uniqKey="Jacobs G">G Jacobs</name>
</author>
<author>
<name sortKey="Oosterlinck, W" uniqKey="Oosterlinck W">W Oosterlinck</name>
</author>
<author>
<name sortKey="Dresselaers, T" uniqKey="Dresselaers T">T Dresselaers</name>
</author>
<author>
<name sortKey="Geenens, R" uniqKey="Geenens R">R Geenens</name>
</author>
<author>
<name sortKey="Kerselaers, S" uniqKey="Kerselaers S">S Kerselaers</name>
</author>
<author>
<name sortKey="Himmelreich, U" uniqKey="Himmelreich U">U Himmelreich</name>
</author>
<author>
<name sortKey="Herijgers, P" uniqKey="Herijgers P">P Herijgers</name>
</author>
<author>
<name sortKey="Vennekens, R" uniqKey="Vennekens R">R Vennekens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W Huang</name>
</author>
<author>
<name sortKey="Rubinstein, J" uniqKey="Rubinstein J">J Rubinstein</name>
</author>
<author>
<name sortKey="Prieto, Ar" uniqKey="Prieto A">AR Prieto</name>
</author>
<author>
<name sortKey="Wang, Dh" uniqKey="Wang D">DH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lupinski, Sl" uniqKey="Lupinski S">SL Lupinski</name>
</author>
<author>
<name sortKey="Schlicker, E" uniqKey="Schlicker E">E Schlicker</name>
</author>
<author>
<name sortKey="Pedzinska Betiuk, A" uniqKey="Pedzinska Betiuk A">A Pedzinska-Betiuk</name>
</author>
<author>
<name sortKey="Malinowska, B" uniqKey="Malinowska B">B Malinowska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Entin Meer, M" uniqKey="Entin Meer M">M Entin-Meer</name>
</author>
<author>
<name sortKey="Levy, R" uniqKey="Levy R">R Levy</name>
</author>
<author>
<name sortKey="Goryainov, P" uniqKey="Goryainov P">P Goryainov</name>
</author>
<author>
<name sortKey="Landa, N" uniqKey="Landa N">N Landa</name>
</author>
<author>
<name sortKey="Barshack, I" uniqKey="Barshack I">I Barshack</name>
</author>
<author>
<name sortKey="Avivi, C" uniqKey="Avivi C">C Avivi</name>
</author>
<author>
<name sortKey="Semo, J" uniqKey="Semo J">J Semo</name>
</author>
<author>
<name sortKey="Keren, G" uniqKey="Keren G">G Keren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sexton, A" uniqKey="Sexton A">A Sexton</name>
</author>
<author>
<name sortKey="Mcdonald, M" uniqKey="Mcdonald M">M McDonald</name>
</author>
<author>
<name sortKey="Cayla, C" uniqKey="Cayla C">C Cayla</name>
</author>
<author>
<name sortKey="Thiemermann, C" uniqKey="Thiemermann C">C Thiemermann</name>
</author>
<author>
<name sortKey="Ahluwalia, A" uniqKey="Ahluwalia A">A Ahluwalia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, B" uniqKey="Zhong B">B Zhong</name>
</author>
<author>
<name sortKey="Wang, Dh" uniqKey="Wang D">DH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zheng, Lr" uniqKey="Zheng L">LR Zheng</name>
</author>
<author>
<name sortKey="Zhang, Yy" uniqKey="Zhang Y">YY Zhang</name>
</author>
<author>
<name sortKey="Han, J" uniqKey="Han J">J Han</name>
</author>
<author>
<name sortKey="Sun, Zw" uniqKey="Sun Z">ZW Sun</name>
</author>
<author>
<name sortKey="Zhou, Sx" uniqKey="Zhou S">SX Zhou</name>
</author>
<author>
<name sortKey="Zhao, Wt" uniqKey="Zhao W">WT Zhao</name>
</author>
<author>
<name sortKey="Wang, Lh" uniqKey="Wang L">LH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y Gao</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J Song</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Cao, C" uniqKey="Cao C">C Cao</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiroi, T" uniqKey="Hiroi T">T Hiroi</name>
</author>
<author>
<name sortKey="Wajima, T" uniqKey="Wajima T">T Wajima</name>
</author>
<author>
<name sortKey="Negoro, T" uniqKey="Negoro T">T Negoro</name>
</author>
<author>
<name sortKey="Ishii, M" uniqKey="Ishii M">M Ishii</name>
</author>
<author>
<name sortKey="Nakano, Y" uniqKey="Nakano Y">Y Nakano</name>
</author>
<author>
<name sortKey="Kiuchi, Y" uniqKey="Kiuchi Y">Y Kiuchi</name>
</author>
<author>
<name sortKey="Mori, Y" uniqKey="Mori Y">Y Mori</name>
</author>
<author>
<name sortKey="Shimizu, S" uniqKey="Shimizu S">S Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberge, S" uniqKey="Roberge S">S Roberge</name>
</author>
<author>
<name sortKey="Roussel, J" uniqKey="Roussel J">J Roussel</name>
</author>
<author>
<name sortKey="Andersson, Dc" uniqKey="Andersson D">DC Andersson</name>
</author>
<author>
<name sortKey="Meli, Ac" uniqKey="Meli A">AC Meli</name>
</author>
<author>
<name sortKey="Vidal, B" uniqKey="Vidal B">B Vidal</name>
</author>
<author>
<name sortKey="Blandel, F" uniqKey="Blandel F">F Blandel</name>
</author>
<author>
<name sortKey="Lanner, Jt" uniqKey="Lanner J">JT Lanner</name>
</author>
<author>
<name sortKey="Le Guennec, Jy" uniqKey="Le Guennec J">JY Le Guennec</name>
</author>
<author>
<name sortKey="Katz, A" uniqKey="Katz A">A Katz</name>
</author>
<author>
<name sortKey="Westerblad, H" uniqKey="Westerblad H">H Westerblad</name>
</author>
<author>
<name sortKey="Lacampagne, A" uniqKey="Lacampagne A">A Lacampagne</name>
</author>
<author>
<name sortKey="Fauconnier, J" uniqKey="Fauconnier J">J Fauconnier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piao, H" uniqKey="Piao H">H Piao</name>
</author>
<author>
<name sortKey="Takahashi, K" uniqKey="Takahashi K">K Takahashi</name>
</author>
<author>
<name sortKey="Yamaguchi, Y" uniqKey="Yamaguchi Y">Y Yamaguchi</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K Liu</name>
</author>
<author>
<name sortKey="Naruse, K" uniqKey="Naruse K">K Naruse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Everett, Kv" uniqKey="Everett K">KV Everett</name>
</author>
<author>
<name sortKey="Chioza, Ba" uniqKey="Chioza B">BA Chioza</name>
</author>
<author>
<name sortKey="Georgoula, C" uniqKey="Georgoula C">C Georgoula</name>
</author>
<author>
<name sortKey="Reece, A" uniqKey="Reece A">A Reece</name>
</author>
<author>
<name sortKey="Capon, F" uniqKey="Capon F">F Capon</name>
</author>
<author>
<name sortKey="Parker, Ka" uniqKey="Parker K">KA Parker</name>
</author>
<author>
<name sortKey="Cord Udy, C" uniqKey="Cord Udy C">C Cord-Udy</name>
</author>
<author>
<name sortKey="Mckeigue, P" uniqKey="Mckeigue P">P McKeigue</name>
</author>
<author>
<name sortKey="Mitton, S" uniqKey="Mitton S">S Mitton</name>
</author>
<author>
<name sortKey="Pierro, A" uniqKey="Pierro A">A Pierro</name>
</author>
<author>
<name sortKey="Puri, P" uniqKey="Puri P">P Puri</name>
</author>
<author>
<name sortKey="Mitchison, Hm" uniqKey="Mitchison H">HM Mitchison</name>
</author>
<author>
<name sortKey="Chung, Em" uniqKey="Chung E">EM Chung</name>
</author>
<author>
<name sortKey="Gardiner, Rm" uniqKey="Gardiner R">RM Gardiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wick, G" uniqKey="Wick G">G Wick</name>
</author>
<author>
<name sortKey="Knoflach, M" uniqKey="Knoflach M">M Knoflach</name>
</author>
<author>
<name sortKey="Kind, M" uniqKey="Kind M">M Kind</name>
</author>
<author>
<name sortKey="Henderson, B" uniqKey="Henderson B">B Henderson</name>
</author>
<author>
<name sortKey="Bernhard, D" uniqKey="Bernhard D">D Bernhard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashiro, K" uniqKey="Yamashiro K">K Yamashiro</name>
</author>
<author>
<name sortKey="Sasano, T" uniqKey="Sasano T">T Sasano</name>
</author>
<author>
<name sortKey="Tojo, K" uniqKey="Tojo K">K Tojo</name>
</author>
<author>
<name sortKey="Namekata, I" uniqKey="Namekata I">I Namekata</name>
</author>
<author>
<name sortKey="Kurokawa, J" uniqKey="Kurokawa J">J Kurokawa</name>
</author>
<author>
<name sortKey="Sawada, N" uniqKey="Sawada N">N Sawada</name>
</author>
<author>
<name sortKey="Suganami, T" uniqKey="Suganami T">T Suganami</name>
</author>
<author>
<name sortKey="Kamei, Y" uniqKey="Kamei Y">Y Kamei</name>
</author>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H Tanaka</name>
</author>
<author>
<name sortKey="Tajima, N" uniqKey="Tajima N">N Tajima</name>
</author>
<author>
<name sortKey="Utsunomiya, K" uniqKey="Utsunomiya K">K Utsunomiya</name>
</author>
<author>
<name sortKey="Ogawa, Y" uniqKey="Ogawa Y">Y Ogawa</name>
</author>
<author>
<name sortKey="Furukawa, T" uniqKey="Furukawa T">T Furukawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamo, T" uniqKey="Kamo T">T Kamo</name>
</author>
<author>
<name sortKey="Akazawa, H" uniqKey="Akazawa H">H Akazawa</name>
</author>
<author>
<name sortKey="Komuro, I" uniqKey="Komuro I">I Komuro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitsky, S" uniqKey="Levitsky S">S Levitsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaminski, Ka" uniqKey="Kaminski K">KA Kaminski</name>
</author>
<author>
<name sortKey="Bonda, Ta" uniqKey="Bonda T">TA Bonda</name>
</author>
<author>
<name sortKey="Korecki, J" uniqKey="Korecki J">J Korecki</name>
</author>
<author>
<name sortKey="Musial, Wj" uniqKey="Musial W">WJ Musial</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Semin Immunopathol</journal-id>
<journal-id journal-id-type="iso-abbrev">Semin Immunopathol</journal-id>
<journal-title-group>
<journal-title>Seminars in Immunopathology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1863-2297</issn>
<issn pub-type="epub">1863-2300</issn>
<publisher>
<publisher-name>Springer Berlin Heidelberg</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26482920</article-id>
<article-id pub-id-type="pmc">4851701</article-id>
<article-id pub-id-type="publisher-id">536</article-id>
<article-id pub-id-type="doi">10.1007/s00281-015-0536-y</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>“TRP inflammation” relationship in cardiovascular system</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Numata</surname>
<given-names>Tomohiro</given-names>
</name>
<address>
<phone>81-92-801-1011</phone>
<email>numata@fukuoka-u.ac.jp</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Takahashi</surname>
<given-names>Kiriko</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Inoue</surname>
<given-names>Ryuji</given-names>
</name>
<address>
<phone>81-92-801-1011</phone>
<email>inouery@fukuoka-u.ac.jp</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Johnan-ku Fukuoka, 814-0180 Japan</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>19</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>19</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<volume>38</volume>
<fpage>339</fpage>
<lpage>356</lpage>
<history>
<date date-type="received">
<day>5</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2015</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>TRP</kwd>
<kwd>Inflammation</kwd>
<kwd>Innate immune system</kwd>
<kwd>Inflammasome</kwd>
<kwd>Cardiovascular</kwd>
<kwd>Disease</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer-Verlag Berlin Heidelberg 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>In the past two decades, growing attention has been directed to the pivotal roles of immunoinflammatory processes in the initiation, progression, and exacerbation of many cardiovascular diseases including atherosclerosis, post-injury vascular stenosis, myocardial infarction, heart failure, myocarditis, vasculitis, and allograft vasculopathy [
<xref ref-type="bibr" rid="CR1">1</xref>
<xref ref-type="bibr" rid="CR4">4</xref>
]. This view originates from a remarkable paradigm shift made by Ross in 1990s who first described that “excessive inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall” is essential for the pathogenesis of atherosclerosis [
<xref ref-type="bibr" rid="CR5">5</xref>
]. There is now paramount evidence that both innate and adaptive immune reactions avidly contribute to many pathological changes in the cardiovascular system, which not only involve the remodeling of the major cellular components of cardiovascular tissues but also activated immune cells migrating and accumulating therein [
<xref ref-type="bibr" rid="CR6">6</xref>
]. Of particular note, solid evidence is now rapidly accumulating for the central significance of “inflammasome,” which serves as a platform mediating many innate immune reactions. The inflammasome is composed of pattern recognition receptors, apoptosis-associated speck-like protein containing a CARD (ASC) [
<xref ref-type="bibr" rid="CR7">7</xref>
], and caspase-1, which by cleaving their inactive precursors generate major inflammatory cytokines interleukin (IL)-β1 and IL-18. Because of its interesting connections to both pathogen- and non-pathogen-derived cell-toxic signals such as infection, tissue damage, metabolic disorders, and other dysfunctional states of cells (see below), the activation of inflammasome is thought to be a key process leading to chronic inflammatory and autoinflammatory diseases [
<xref ref-type="bibr" rid="CR8">8</xref>
]. Yet, the mechanism(s) of the activation still remains poorly understood. There are however intriguing suggestions that activation of inflammasome may depend crucially on altered ionic balance (Ca
<sup>2+</sup>
, K
<sup>+</sup>
, Cl
<sup></sup>
) and production of noxious gaseous mediators and its downstream mediators (ROS, NO) [
<xref ref-type="bibr" rid="CR9">9</xref>
<xref ref-type="bibr" rid="CR11">11</xref>
]. At a first glance, besides other types of channels transporting K
<sup>+</sup>
, Cl
<sup></sup>
, and Ca
<sup>2+</sup>
, these properties are strongly reminiscent of transient receptor potential (TRP) channels.</p>
<p>This review paper aims to promote our understanding about this rapidly developing field, i.e., the emerging significance of TRP channels for immunoinflammatory mechanisms in the cardiovascular (CV) system, with particular interest in innate immunity. To this end, in the first parts, we will focus on both exogenous and endogenous factors related to innate immunity and its sustained status, i.e., chronic inflammation, which possibly connect to TRP channel activities. The emerging role of autophagy to regulate innate immunity and its possible connection to TRP channels will also be discussed. In the last part, we will discuss about the linkage of TRP channels to CV inflammatory diseases, but rather from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity, because the available information in this field is still greatly limited. Readers interested in another important topic, the connection of adaptive immunopathophysiology to various Ca
<sup>2+</sup>
-mobilizing mechanisms, are advised to consult with a few excellent reviews published elsewhere [
<xref ref-type="bibr" rid="CR12">12</xref>
].</p>
</sec>
<sec id="Sec2">
<title>Connection between TRP channels and innate immunity</title>
<p>The innate immune system has an ancient origin and is well conserved across species (plants, invertebrates, and vertebrates). This system defends on the frontline against microbial infection and tissue damage, consisting of environmental sensors, cellular signaling cascades, and production of antimicrobial peptides [
<xref ref-type="bibr" rid="CR13">13</xref>
<xref ref-type="bibr" rid="CR16">16</xref>
]. The recognition of pathogen-associated molecular patterns (PAMPs) or non-pathogen-associated (or danger- or damage-associated) molecular patterns (DAMPs) is the first step of activating the innate immune response, which is fulfilled via their specific receptors called the pattern recognition receptors (PRRs). The PRR family is comprised of membrane-bound Toll-like receptors (TLRs), C-type lectin receptors, retinoid acid-inducible gene (RIG)-1-like receptors, and nucleotide-binding oligomerization domain (NOD) receptor-like receptors (NLRs). TLRs have been shown to be expressed ubiquitously in cells constituting or residing in the CV system such as cardiomyocytes (TLR5), endothelial cells (TLR2/4), and macropharges/monocytes and dendritic cells (TLR1/2/4/5/8 and TLR1/2/3/7/9, respectively) [
<xref ref-type="bibr" rid="CR17">17</xref>
]. Activation of PRRs by PAMPs or DAMPs is known to subsequently activate inflammasomes, whereby to promote the production of highly proinflammatory cytokines such as IL-1β and IL-18 [
<xref ref-type="bibr" rid="CR18">18</xref>
]. A variety of inflammatory factors are suggested to activate the inflammasome. These include both direct and indirect signal recognition factors such as virus, bacterial toxins, particle matters, autoantibodies, and other products released from cells in dysfunction. Although there is no biochemical or morphological evidence for the coexpression with these PPRs, recent studies have suggested that TRP channels may functionally act as a cofactor PAMP/DAMP-mediated signaling for a multitude of ligands of both endogenous and exogenous origins [
<xref ref-type="bibr" rid="CR19">19</xref>
]. Available evidence suggests that the connection of TLRs to TRP channels occurs through directly by LPS (TRPA1; [
<xref ref-type="bibr" rid="CR20">20</xref>
]); diacylglycerol (DAG) (TRPC6; [
<xref ref-type="bibr" rid="CR21">21</xref>
]); ROS (TRPM4 and TRPM7; [
<xref ref-type="bibr" rid="CR22">22</xref>
], [
<xref ref-type="bibr" rid="CR23">23</xref>
]); and PKC (TRPV1; [
<xref ref-type="bibr" rid="CR24">24</xref>
]).</p>
<p>TRP channels are a family of non-selective cation channels that function as polymodal signal detectors [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
] and involved in a variety of body functions and diseases [
<xref ref-type="bibr" rid="CR27">27</xref>
]. TRP channels are membrane proteins with six putative transmembrane segments (S1–S6) and a pore region between S5 and S6. About 30 different mammalian TRP channels have been identified and classified into six subfamilies on the basis of sequence homology: canonical or classical (TRPC; TRPC1–7), vanilloid (TRPV; TRPV1–6), melastatin (TRPM; TRPM1–8), polycystin (TRPP; TRPP2, TRPP3, TRPP5), mucolipin (TRPML; TRPML1–3), and ankyrin (TRPA; TRPA1) [
<xref ref-type="bibr" rid="CR28">28</xref>
]. Different TRP channels show distinct cation selectivities and gating mechanisms and can be activated by a wide array of physical and chemical stimuli [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
]. The regulation of TRP channels occurs at transcriptional, translational, and post-translational levels, which frequently depends on the ionic balance, microbial ligands, cytokines, or reactive oxygen species (ROS). Indeed, inflammatory transcription factors such as nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and hypoxia-inducible factor (HIF)-1 are linked to ROS and elevated intracellular Ca
<sup>2+</sup>
concentration. These features render TRP channels potentially effective to modulate inflammations.</p>
<p>In the following, we will discuss about how TRP channels are connected to respective factors and mechanisms that can activate/modulate inflammation through innate immunity.</p>
</sec>
<sec id="Sec3">
<title>Factors that affect innate immune response via TRP channels (see Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
)</title>
<p>
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Factors affecting innate immune response via TRP channels. An incoming microorganism or virus infection can induce inflammasome activation by stimulating innate immune receptors, such as Toll-like receptors (TLRs). Alternatively, TRP channel can be activated by the constituents of microorganism (e.g., LPS) directly or indirectly through TLR activation. TRP channel is also activated by potentially toxic/harmful environmental factors, such as MSU, silica, Alum, Aβ, and PM. In addition, an essential nutrient and a cellular constituent cholesterol can modulate TRP channel activity. Abnormal TRP channel activity causes Ca
<sup>2+</sup>
influx and thereby produces ROS. The resultant intracellular Ca
<sup>2+</sup>
elevation and ROS may induce inflammasome activity. Moreover, dysfunction of TRP channel in mitochondria or lysosome can also activate inflammasome. It should be noted that appropriate operation of autophagy is essential to suppress the caspase-1 activity, which would prevent the production of inflammatory cytokine (IL-1β and IL-18). How TRP channel-mediated Ca
<sup>2+</sup>
influx regulates the inflammasome activation is not fully understood; but quite conceivably, it would play a key role in innate immune response.
<italic>Question marks</italic>
denote the hypothetical pathways that will require further proof</p>
</caption>
<graphic xlink:href="281_2015_536_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<sec id="Sec4">
<title>Viral and bacterial infections</title>
<p>Viral and bacterial infections are logical candidates for environmental triggers of immune reactions associated with TRP channel-dependent signaling and inflammasome activation. Upon recognition of microbial pathogens, TLRs serve as germline-encoded PRRs that play a central role in host cell recognition and responses. However, how TLR-dependent signaling links to TRP channel was unclear until very recently.</p>
<p>Several studies in the past few years revealed intriguing connections of TLRs to TRP channels. One study reported that hemolytic streptococcal infection affects the expression levels of at least seven TRP members, i.e., TRPC4, TRPM6, TRPM7, TRPM8, TRPV1, TRPV4, and TRPA1 [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
]. Another study showed that TRPC1 plays a functional role in host defense against gram-negative bacteria. Upon infection, TRPC1 (−/−) mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination. Furthermore, siRNA silencing of TRPC1 resulted in decreased Ca
<sup>2+</sup>
entry, reduced proinflammatory cytokine production, and lowered bacterial clearance. Importantly, bacterium-mediated activation of TRPC1 was coupled with a cascade of TLR4 signaling; TLR4-dependent, TRPC1-mediated Ca
<sup>2+</sup>
entry triggers PKCα activity to facilitate NF-κB/c-Jun N-terminal kinase (JNK) activation and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings favor the view that activation of TRPC1 is required for the host defense against bacterial infections through the TLR4-TRPC1-PKCα signaling pathway, but its excessive activity may lead to exacerbation of inflammation [
<xref ref-type="bibr" rid="CR32">32</xref>
]. A similar but in-opposite-direction involvement of TRPC1-mediated Ca
<sup>2+</sup>
entry in TLR-mediated inflammation has been demonstrated in microglia and macrophages from mice intracranially inoculated with a helminth
<italic>Mesocestoides corti</italic>
[
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
]; it has been known that humans infected with a related helminth cestode
<italic>Taenia solium</italic>
have immunosuppressive rather than inflammatory responses in the asymptomatic phase after the infection. Experiments using soluble parasite factors from
<italic>Mesocestoides</italic>
-infected mice showed that suppression of TRPC1-mediated store-operated Ca
<sup>2+</sup>
entry by these factors and consequent inhibition of NF-κB, JNK, and MAPK pathways are likely responsible for the immunosuppression. This novel immunosuppressive mechanism appears therapeutically useful to prevent the initiation of TLR-dependent inflammatory response via suppression of TRPC1 activity. In cultured macrophages, however, degradation of TRPC1 by caspase-11, an inducible caspase which is activated by NLRP3 inflammasome activator lipopolysaccharide (LPS), was found to increase the secretion of IL-1β. This negative regulation by TRPC1 occurred independently of caspase-1 cleavage or cell death [
<xref ref-type="bibr" rid="CR35">35</xref>
] and thus likely reflects a distinctive mechanism from those described above. Consistently, a higher IL-1β secretion was observed in the sepsis model of TRPC1-deficient mice made by intraperitoneal LPS injection [
<xref ref-type="bibr" rid="CR35">35</xref>
]. Although there is always a caveat to the relevance of knockout studies such as compensatory expression of homologous or other types of molecules which might affect downstream signaling (similar arguments may also hold for other TRP knockout models; see below), these results collectively imply the presence of multiple signaling pathways involving TRPC1 that regulate TLR-mediated inflammation. Further detailed analyses will be necessary to understand how manipulation of TRPC1 activity could be utilized for immune-modulatory interventions of inflammation.</p>
<p>In addition, there is evidence linking other TRP members to TLR-mediated signaling. In airway smooth muscle (ASM) cells, exposure to a proinflammatory cytokine TNF alpha (TNFα) or a mixture of allergens (ovalbumin, house dust mite,
<italic>Alternaria</italic>
, and
<italic>Aspergillus</italic>
extracts) causes both acute and chronic inflammations. These inflammatory responses involve at least in part increased secretion of brain-derived neurotrophic factor (BDNF) in a manner dependent on TRPC3-mediated Ca
<sup>2+</sup>
entry [
<xref ref-type="bibr" rid="CR36">36</xref>
]. In endothelial cells (ECs), endotoxin (LPS) induces pathological vascular leakage. This occurs through the interaction between TLR4 signaling and TRPC6-mediated Ca
<sup>2+</sup>
entry, which causes increased endothelial permeability via activation of non-muscle myosin light chain kinase (MYLK) and NF-κB. Genetic deletion of TRPC6 rendered mice resistant to endotoxin-induced barrier dysfunction and inflammation and protected against sepsis-induced lethality [
<xref ref-type="bibr" rid="CR21">21</xref>
].</p>
<p>TRPM4 is causally related to LPS-induced endothelial cell death via intracellular Na
<sup>+</sup>
overloading. Pharmacological inhibition of TRPM4 activity with 9-phenathrol or glibenclamide was found to attenuate this consequence, suggesting a therapeutic potential of TRPM4 for endotoxin shock [
<xref ref-type="bibr" rid="CR22">22</xref>
]. TRPM7-mediated intracellular concentration of Ca
<sup>2+</sup>
([Ca
<sup>2+</sup>
]
<sub>i</sub>
) elevation serves as a key regulator for endotoxin-induced endothelial fibrosis through endothelial to mesenchymal transition [
<xref ref-type="bibr" rid="CR23">23</xref>
]. This channel is also implicated in LPS-induced endothelial cell migration via TLR4/NF-κB pathway [
<xref ref-type="bibr" rid="CR37">37</xref>
]. TRPM2-deficient mice shows compromised innate immunity against
<italic>Listeria monocytogenes</italic>
infection which allows uncontrolled replication of the bacteria with significantly reduced production of IL-12 and interferon-γ [
<xref ref-type="bibr" rid="CR38">38</xref>
]. Consistent with this finding, in a cecal ligation and puncture (CLP)-induced mouse sepsis model, genetic disruption of TRPM2 was found to cause impaired host defense, leading to increased mortality associated with increased bacterial burden, organ injury, and systemic inflammation. Interestingly, this finding appears to reflect failed upregulation of heme oxgenase (HO)-1 in macrophages which is normally induced by TRPM2-mediated Ca
<sup>2+</sup>
influx and essential for bacterial clearance [
<xref ref-type="bibr" rid="CR39">39</xref>
].</p>
<p>In recent years, the potential benefits of TRPV1 activation have been recognized for the abatement of inflammatory response. For example, in
<italic>Helicobacter pylori</italic>
-positive patients, the genetic polymorphism of TRPV1 945G>C has been suggested to be one of the pathophysiological factors of functional dyspepsia [
<xref ref-type="bibr" rid="CR40">40</xref>
]. In murine sepsis models, genetic or pharmacologic disruption of TRPV1 can affect mortality, blood bacteria clearance, and cytokine response, in such a pattern that may vary according to the sepsis-inducing events and the methods of TRPV1 disruption [
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
]. In salivary glands, polyinosinic-polycytidylic acid or LPS activates, via TLR4 activation, NF-κB by IκB-α degradation and phosphorylation to release highly proinflammatory cytokines TNFα and IL-6. Capsaicin inhibits this process by interacting with the NF-κB pathway whereby to potentially alleviate inflammation of salivary glands [
<xref ref-type="bibr" rid="CR43">43</xref>
]. Indeed, in healthy human subjects as well as patients, capsaicin has been suggested to have a therapeutic potential alone or in combination with other non-steroidal anti-inflammatory drugs [
<xref ref-type="bibr" rid="CR44">44</xref>
], and in a mouse CLP model, capsaicin is shown to relieve the damaging impact of sepsis through TRPV1 activation [
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
]</p>
</sec>
<sec id="Sec5">
<title>MSU, cholesterol, amyloid-β, and ambient particle matter</title>
<sec id="Sec6">
<title>MSU</title>
<p>A uric acid crystal, monosodium urate (MSU), has emerged as an important factor for both gouty arthritis and immune regulation. This simple crystalline structure appears to activate innate host defense mechanisms in multiple ways and trigger robust inflammation and immune reactions. When MSU enters the cell, MSU further triggers NLRP3 inflammasome activation, but the activation mechanism responsible is still elusive. A number of reports suggested that sensory TRP channels such as TRPV1 and TRPA1 may contribute to this activation process [
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
]. However, this interesting hypothetical link relies on the intracellular Ca
<sup>2+</sup>
measurements, and whether MSU crystals can directly activate TRPV1 [
<xref ref-type="bibr" rid="CR46">46</xref>
] or TRPA1 [
<xref ref-type="bibr" rid="CR47">47</xref>
] has not been shown. Considering that MSU crystal acts as an oxidative stress to facilitate ROS production, it may activate TRPA1 and TRPV1 via ROS production. Nevertheless, the fact that TRPV1 and TRPA1 mediate MSU crystal-induced inflammation and pain in experimental models strongly supports their undoubted roles as inflammatory mediators [
<xref ref-type="bibr" rid="CR46">46</xref>
<xref ref-type="bibr" rid="CR50">50</xref>
].</p>
</sec>
<sec id="Sec7">
<title>Cholesterol</title>
<p>A high serum level cholesterol (hypercholesterolemia), a risk factor for CV disease, promotes inflammatory responses including TLR signaling, inflammasome activation, and the production of monocytes and neutrophils in bone marrow and spleen [
<xref ref-type="bibr" rid="CR51">51</xref>
]. Cholesterol was also shown to have a significant impact on several different types of TRP channel activities [
<xref ref-type="bibr" rid="CR52">52</xref>
]. Cellular cholesterol affects arterial reactivity to endothelin-1 (ET-1). In endothelium-denuded caudal artery, cholesterol depletion by methyl-β-cyclodextrin (mβcd) treatment attenuated vasoconstriction to ET-1, with paralleled reduction of store-operated Ca
<sup>2+</sup>
entry via TRPC1 [
<xref ref-type="bibr" rid="CR53">53</xref>
]. Similarly, cholesterol-mediated activation was observed for other TRP channels. In TRPC3 expressing HEK cells, application of cholesterol enhanced TRPC3 activity [
<xref ref-type="bibr" rid="CR54">54</xref>
]. In prostate cancer cells which endogenously express TRPM7, cholesterol-mediated activation of TRPM7 is important for initiation and/or progression of the cancer [
<xref ref-type="bibr" rid="CR55">55</xref>
]</p>
<p>In vascular smooth muscle cells (VSMCs), TRPM3 expression was detected at both mRNA and protein levels. In freshly isolated aorta, constitutively active TRPM3 channel positively modulated the contractile responses independently of L-type calcium channels; elevation of cholesterol suppressed TRPM3 channel activity [
<xref ref-type="bibr" rid="CR56">56</xref>
].</p>
<p>These results collectively suggest that an appropriate level of cholesterol may be requisite for normal contractility of arteries, and its excess level may lead to CV diseases as well as makeup of microenvironments propensitive for cancer development.</p>
</sec>
<sec id="Sec8">
<title>Amyloid-β</title>
<p>The fibrillar peptide amyloid-β (Aβ) is a main pathogenic factor of Alzheimer’s disease (AD). It has been reported that activation of TRPM2 contributes to Aβ- and oxidative stress-induced striatal cell death in rat striatum [
<xref ref-type="bibr" rid="CR57">57</xref>
]. The activation of TRPM2 is thought to occur through direct and indirect pathways. Accumulation of Aβ which increases vascular oxidative stress via mitochondrial dysfunction results in sequential occurrences of DNA damages, poly-ADP-ribose polymerase activation, and ADP-ribose production in ECs, which leads to their dysfunction via TRPM2-mediated intracellular Ca
<sup>2+</sup>
overload [
<xref ref-type="bibr" rid="CR58">58</xref>
]. The resultant cerebrovascular dysfunction may accelerate the AD pathogenesis by reducing the cerebral blood and glucose supply, increasing susceptibility to vascular insufficiency, and further promoting Aβ accumulation [
<xref ref-type="bibr" rid="CR59">59</xref>
]. The other oxidative stress-sensitive TRP channels such as TRPV1, TRPV4, and TRPC1 are also implicated in Aβ-induced damages of other cell types including glia [
<xref ref-type="bibr" rid="CR60">60</xref>
<xref ref-type="bibr" rid="CR63">63</xref>
], smooth muscle cells [
<xref ref-type="bibr" rid="CR64">64</xref>
], and ECs [
<xref ref-type="bibr" rid="CR65">65</xref>
].</p>
</sec>
<sec id="Sec9">
<title>Ambient particle matter</title>
<p>Exposure to ambient particulate matters (PMs) is a significant risk factor to increase respiratory and cardiopulmonary morbidity and mortality, but the mechanism underlying remains largely unknown. In addition to the implications of sensory nerve TRPV1 and TRPA1 in airway hypersensitivity and inflammation which involve environmental noxious stimuli [
<xref ref-type="bibr" rid="CR66">66</xref>
], there is evidence that PM acts as a proinflammatory agent to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. This suggests the possibility that oxidative stress-sensitive TRP channels may be involved in PM-mediated pathophysiology. Indeed, TRPM2, TRPV1, TRPV4, and TRPA1 have been implicated in cellular and tissue damages caused by PM-mediated oxidative stresses associated with diesel exhaust, wood smoke, and other concentrated ambient particles [
<xref ref-type="bibr" rid="CR67">67</xref>
<xref ref-type="bibr" rid="CR75">75</xref>
].</p>
</sec>
</sec>
<sec id="Sec10">
<title>Autophagy and lysosomal function</title>
<p>Autophagy is a highly evolutionarily conserved catabolic process to degrade and recycle cytoplasmic contents via a lysosomal route for reuse in downstream metabolism. It becomes increasingly clear that insufficiency of autophagy is an important pathogenic mechanism for inflammatory diseases [
<xref ref-type="bibr" rid="CR76">76</xref>
]. Recently, a possible link between autophagy deficiency and increased inflammasome activation was suggested. The mechanism proposed includes the following causal sequence of cellular events: inefficient mitophagy, accumulation of damaged mitochondria, increased ROS production, and ROS-mediated inflammasome activation which occurs either directly or indirectly via DNA damage and secondary inflammatory signaling(s). Autophagy deficiency also reduces the efficiency of lysosomal degradation and thereby facilitates the accumulation of intra-lysosomal lipids and cholesterol crystals. This then leads to lysosomal membrane destabilization, lysosomal leakage, and inflammasome activation [
<xref ref-type="bibr" rid="CR77">77</xref>
]. A similar consequence of autophagy deficiency can be expected for inefficient lysosomal degradation of damaged organelles and proteins. Therefore, normal function of the autophagy system is indispensable for keeping the cell healthy.</p>
<p>TRPML1 is an important player in endosomal sorting and transporting processes at the late endocytotic phase, specifically the formation of late endosome-lysosome hybrid vesicles [
<xref ref-type="bibr" rid="CR78">78</xref>
<xref ref-type="bibr" rid="CR81">81</xref>
]. In other words, the role of this channel is to control the delivery of cellular materials to lysosomes, an essential process of autophagy [
<xref ref-type="bibr" rid="CR82">82</xref>
<xref ref-type="bibr" rid="CR84">84</xref>
]. Altered activity of TRPML1 has been implicated in lysosomal dysfunction and impaired autophagy associated with AD-linked presenilin-1 mutations. In this pathological state, disrupted lysosomal acidification due to defective vesicular ATPase activity are thought to be primarily responsible for lysosomal and autophagy deficits, but concurrently, abnormal cytosolic Ca
<sup>2+</sup>
elevation occurs via facilitated Ca
<sup>2+</sup>
efflux through TRPML1 channel. However, correcting this abnormal Ca
<sup>2+</sup>
homeostasis alone is not sufficient to restore normal lysosomal proteolytic and autophagic activities, thus suggesting that TRPML1 may play a permissive role in this process [
<xref ref-type="bibr" rid="CR85">85</xref>
]. In this regard, it may deserve to mention that in humans, mutations in the gene encoding TRPML1 channel (
<italic>MCOLN1</italic>
) are the cause of the neurodegenerative disorder mucolipidosis type IV (MLIV) [
<xref ref-type="bibr" rid="CR86">86</xref>
].</p>
<p>TRPML3 is a novel Ca
<sup>2+</sup>
channel that plays a crucial role in the regulation of cargo trafficking along the endosomal [
<xref ref-type="bibr" rid="CR87">87</xref>
,
<xref ref-type="bibr" rid="CR88">88</xref>
] and autophagosomal maturation [
<xref ref-type="bibr" rid="CR89">89</xref>
] pathways. In infected bladder epithelial cells (BECs), TRPML3 triggers a non-lytic expulsion of bacteria (which is a powerful cell-autonomous defense strategy) to rapidly reduce infectious burden. This lysosomal channel is capable of sensing uropathogenic
<italic>Escherichia coli</italic>
-mediated lysosome neutralization and, in turn, releasing Ca
<sup>2+</sup>
, thereby triggering lysosomal exocytosis to expel the bacteria.[
<xref ref-type="bibr" rid="CR90">90</xref>
]</p>
<p>The full-length form of TRPM2 channel (TRPM2-L) has a short splice variant consisting of only the N terminus and the first two transmembrane segments and lacking a pore domain (TRPM2-S). In expression system, coexpression of TRPM2-S suppressed oxidant-induced Ca
<sup>2+</sup>
entry through TRPM2-L and subsequent cell death, presumably through a negative physical interaction [
<xref ref-type="bibr" rid="CR91">91</xref>
]. Although its pathophysiological significance had been unclear, a recent study has revealed an interesting connection of this short variant (TRPM2-S) to autophagy. Mitochondrial homeostasis is dynamically regulated by the processes of autophagy/mitophagy and mitochondrial biogenesis. As compared with tumor cells expressing TRPM2-L isoform abundantly, those expressing TRPM2-S showed the accumulation of damaged mitochondrial DNAs with increased levels of unremoved heat shock protein 60 (Hsp60) and a mitochondrial protein translocase of outer membrane 20 (Tom20) in mitochondria. These results are interpreted to suggest that oxidant-induced Ca
<sup>2+</sup>
entry mediated by TRPM2 may be crucial to maintain normal autophagy/mitophagy activity [
<xref ref-type="bibr" rid="CR92">92</xref>
].</p>
<p>Oxidative stress induces pleiotropic responses ranging from cell survival to death. A recent study has given an interesting explanation about these differential cell fates, i.e., involvement of distinct poly(ADP-ribose) polymerase (PARP) isoforms (PARP1, PARP2) and distinctive cellular localization of TRPM2 channel. PARPs are enzymes producing poly(ADP-ribose) and, in conjunction with poly(ADP-ribose) glyocohydorase, capable of activating TRPM2 channel via immediate conversion of poly(ADP-ribose) into monomeric ADP-ribose. Under moderate oxidative stress conditions (5 mM H
<sub>2</sub>
O
<sub>2</sub>
), plasma membrane TRPM2 is under the control of PARP1, activation of which leads to the phosphorylation of p38, SAPK/JNK, and cAMP response element-binding protein (CREB)/ATF-1. This ultimately induces autophagy, thereby allowing cell survival. In contrast, high oxidative stress (10 mM H
<sub>2</sub>
O
<sub>2</sub>
) triggers late autophagy steps and PARP2 activation, leading to cell death with the activation of lysosomal TRPM2 channel [
<xref ref-type="bibr" rid="CR93">93</xref>
].</p>
</sec>
</sec>
<sec id="Sec11">
<title>TRP channels may link to persistent activation of inflammasome (see Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
)</title>
<p>
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Possible link of TRP channels to persistent inflammasome activation. Inflammation are mediated by signal transduction from both inflammation-related receptors and stress-sensing TRP channels to transcription factors. The “
<italic>Receptor</italic>
” pathway is activated via alteration of internal or external environmental factors in affected cells, including abnormal upregulation or persistent activation of receptors (e.g., cytokine receptors, growth factor receptors, Toll-like receptors) with increased kinase activity, excessive ROS production, and intracellular Ca
<sup>2+</sup>
perturbation. The “
<italic>TRP</italic>
” pathway can also be activated by alteration of internal or external environmental factors and is susceptible to the regulations at functional and expression levels. Importantly, both pathways may intersect to modulate each other, since many of the environmental factors associated with inflammation are physical and chemical cell-stressing stimuli. Besides being involved in proliferation, survival, migration, and differentiation, transcription factors can induce the expression of many proinflammatory cytokines and other inflammatory mediators. Importantly, the receptors for many of these cytokines, chemokines, and mediators can further activate the inflammatory transcription factors, thereby forming autocrine and paracrine feedback loops. This would then result in the continuous amplification and promotion of inflammatory reactions leading to chronic inflammation</p>
</caption>
<graphic xlink:href="281_2015_536_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>The early inflammatory response is absolutely essential for the elimination of pathogens, but the termination of the process is equally an important step. Failure to control inflammation leads to immunopathology, including CV diseases and organ dysfunctions. Over time, this leads to fibrotic or cancerous transformation or chronic inflammation.</p>
<p>There are three aspects in the progression of inflammation with respect to inflammasome activity. The first is the “priming” signal that enhances the gene expression of inflammasome components. The second is the “activation” signal that promotes the assembly of inflammasome components. And the last is the “amplification” signal that drives a feedback signal amplification loop. The NLRP3 inflammasome activates caspase-1, which then promotes maturation and secretion of two potent inflammatory cytokines: IL-1β and IL-18. The NLRP3 inflammasome responds not only to pathogens but also to a variety of “danger signals” released in inflamed tissues including cytokines, tissue degradation products, etc. This leads to the formation of a dangerous positive feedback loop which continuously exacerbates the NLRP3 inflammasome response. Under these pathological conditions, the activation of transcription factors, e.g., NF-κB, nuclear factor of activated T cell (NFAT), STAT3, and HIF-1, by inflammatory cytokines appears crucial for the amplification loop of inflammasomes [
<xref ref-type="bibr" rid="CR94">94</xref>
<xref ref-type="bibr" rid="CR97">97</xref>
]. Therefore, the suppression of this amplification loop is of key importance to effectively eliminate infection by stopping acute inflammation and/or restoring homeostatic regulation.</p>
<p>Concentrations of both extracellular and intracellular Ca
<sup>2+</sup>
can increase at the sites of infection, inflammation, or immune cell activation. It has been shown that increased extracellular calcium could act as a danger signal and an amplifier of inflammation via activation of the G protein-coupled calcium sensing receptor—phosphatidylinositol/Ca
<sup>2+</sup>
—NLRP3 inflammasome signaling pathway [
<xref ref-type="bibr" rid="CR98">98</xref>
]. Therefore, Ca
<sup>2+</sup>
influx may serve as an important control point for inflammasome activity that needs to be tightly regulated by the host in order to avoid an excessive production of cytokines or overt cell death. Moreover, proinflammatory transcription factors, in particular, Ca
<sup>2+</sup>
-dependent ones, may play central roles in this control. In this section, we attempt to summarize the connection between inflammatory transcription factors and TRP channels.</p>
<sec id="Sec12">
<title>NF-κB</title>
<p>NF-κB consists of a family of transcription factors that play critical roles in inflammation, immunity, cell proliferation, differentiation, and survival [
<xref ref-type="bibr" rid="CR99">99</xref>
]. One of the factors known to activate NF-κB is an elevation in [Ca
<sup>2+</sup>
]
<sub>i</sub>
[
<xref ref-type="bibr" rid="CR100">100</xref>
,
<xref ref-type="bibr" rid="CR101">101</xref>
]. There are several papers linking Ca
<sup>2+</sup>
-permeable TRP channels to NF-κB-mediated inflammatory reactions; suppression of TRPC1-mediated Ca
<sup>2+</sup>
entry inhibited NF-κB activation, which is associated with immunosuppressive mechanism in helminth infections [
<xref ref-type="bibr" rid="CR34">34</xref>
]; pharmacological inhibition of TRPM7 channel suggested its involvement in LPS-induced EC migration via the TLR-NF-κB signaling [
<xref ref-type="bibr" rid="CR37">37</xref>
]; endotoxin-induced lung injury involves TLR4-mediated NF-κB activation in a manner dependent on TRPC6-mediated Ca
<sup>2+</sup>
entry [
<xref ref-type="bibr" rid="CR21">21</xref>
].</p>
<p>Therapeutic potential of targeting NF-κB has been validated by its decoy treatments in a number of inflammatory CV diseases, including myocarditis, post-stenting coronary restenosis, and coronary hypertophic proliferation [
<xref ref-type="bibr" rid="CR102">102</xref>
<xref ref-type="bibr" rid="CR104">104</xref>
].</p>
</sec>
<sec id="Sec13">
<title>STAT3</title>
<p>The STAT3 has a dual role: both transducing signals through the cytoplasm and functioning as a transcription factor in the nucleus. STAT3 can be activated by extrinsic pathways, i.e., environmental factors, such as ultraviolet (UV) radiation, chemical carcinogens, infection, stress, and cigarette smoke, through growth factor, cytokine, Toll-like, adrenergic, and nicotinic receptors, respectively [
<xref ref-type="bibr" rid="CR95">95</xref>
]. Persistently activated STAT3 mediates cell proliferation, survival, and invasion during inflammasome activation. Several studies suggest that TRP channels may regulate STAT3 activity.</p>
<p>Receptor-induced phosphorylation of cellular Janus kinase 2 (JAK2) or c-Jun and STAT3 are regulated by TRPC1- and TRPC6-mediated Ca
<sup>2+</sup>
influxes [
<xref ref-type="bibr" rid="CR105">105</xref>
<xref ref-type="bibr" rid="CR108">108</xref>
]. This could cause persistent inflammation, resulting in chronic inflammation with global tissue changes and injury. The Ca
<sup>2+</sup>
transporting activity of TRPM7 is closely associated with the activation of the JAK2/STAT3 and/or Notch signaling pathways, which, in turn, induces ischemic neuronal cell death, metastatic transformation of breast cancer cells or proliferation, migration and invasion of glioma stem cells, and the fingerprints of sustained or chronic inflammation [
<xref ref-type="bibr" rid="CR109">109</xref>
<xref ref-type="bibr" rid="CR111">111</xref>
]. Albeit little evidence, it is tempting to speculate that constitutive Ca
<sup>2+</sup>
permeating activity TRPM7 channel might effectively drive, via Ca
<sup>2+</sup>
-dependent activation of STAT3, a feedback cycle of persistent activation of inflammasome toward chronic inflammation. A different line of evidence suggests that TRPV1 activates the STAT3 and NF-κB signaling pathways and thereby facilitates the expression of anti-inflammatory neuropeptides [
<xref ref-type="bibr" rid="CR112">112</xref>
]. This hints a unique protective role of TRPV1 against inflammation, which is rarely seen for the other types of TRP channels.</p>
</sec>
<sec id="Sec14">
<title>HIF-1</title>
<p>HIFs are transcription factors that respond to changes in available oxygen in the cellular environment. However, a recent research suggests that, in certain pathological settings, HIF induction in normoxia likely causes serious consequences encompassing chronic inflammatory components. Chronic inflammation can be a self-perpetuating process so that it may continuously distort cellular microenvironments as the result of aberrantly active transcription factors. Consequent alterations in growth factors, chemokines, cytokines, and redox balance occur within the cellular milieu that, in turn, provide the axis of growth and survival needed for de novo development of cancer and metastasis [
<xref ref-type="bibr" rid="CR113">113</xref>
]. In addition, a recent study suggested that cAMP/PKA/CREB/HIF-1α pathway is important for sustained inflammasome activity [
<xref ref-type="bibr" rid="CR114">114</xref>
]. Considering that TRP channels serve as important Ca
<sup>2+</sup>
entry routes associated with cellular stresses, it is possible that abnormal TRP channel activity would damage the intracellular microorganelles and disturb the redox balance. In fact, there are many reports found for the linkage between HIF-1 and TRP channels (e.g., TRPC1 [
<xref ref-type="bibr" rid="CR115">115</xref>
<xref ref-type="bibr" rid="CR117">117</xref>
], TRPC3 [
<xref ref-type="bibr" rid="CR118">118</xref>
], TRPC5 [
<xref ref-type="bibr" rid="CR119">119</xref>
], TRPC6 [
<xref ref-type="bibr" rid="CR120">120</xref>
,
<xref ref-type="bibr" rid="CR121">121</xref>
], TRPM2 [
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR122">122</xref>
], and TRPM7 [
<xref ref-type="bibr" rid="CR123">123</xref>
]).</p>
</sec>
<sec id="Sec15">
<title>NFAT</title>
<p>The calcineurin-NFAT signaling plays a pivotal role in the transcription of cytokine genes and other genes critical for the T cell-mediated adaptive immune responses [
<xref ref-type="bibr" rid="CR124">124</xref>
]. However, later studies identified its more ubiquitous roles in other organ systems [
<xref ref-type="bibr" rid="CR125">125</xref>
]. For example, an established role of NFAT in the CV system is a hub mediator of hypertrophic signaling. In the heart, both mechanical and neurohormonal stresses activate the calcineurin-NFAT signaling to induce prominent pathological hypertrophy. The members of TRPC subfamily have been implicated in the activation step of this signaling as the stress-sensing Ca
<sup>2+</sup>
-permeating channels [
<xref ref-type="bibr" rid="CR126">126</xref>
<xref ref-type="bibr" rid="CR128">128</xref>
]. In blood vessels, therapeutic benefits of an immunosuppressant cyclosporin A is known for transplant vasculopathy, part of which is causally related to the inhibition of calcineurin-NFAT signaling in ECs [
<xref ref-type="bibr" rid="CR129">129</xref>
]. In diabetic mice, pharmacological inhibition of NFAT (by A-285222) reduced atherosclerotic lesion by inhibiting cytokine release and adhesion molecule expression [
<xref ref-type="bibr" rid="CR130">130</xref>
]. Albeit scanty information, involvement of TRPC members has been suggested for inflammatory responses in renal podocyte injury and structural and functional remodeling after myocardial infarction via activation of the calcineurin-NFAT signaling [
<xref ref-type="bibr" rid="CR131">131</xref>
,
<xref ref-type="bibr" rid="CR132">132</xref>
]. There is however little evidence yet obtained that directly links TRP channels to chronic inflammatory diseases (e.g., atherosclerosis) through this signaling pathway.</p>
</sec>
</sec>
<sec id="Sec16">
<title>TRP inflammation relationship in CV diseases</title>
<p>Many CV diseases are tightly associated with inflammatory/immune responses in their pathogenesis. This include a wide range of vascular diseases (endotoxin shock, acute vasculitis, atherosclerosis, post-operative stenosis, allograft vasculopathy), cardiac diseases (cardiac hypertrophy, dilated cardiomyopathy, myocardial infarction or ischemia/reperfusion injury, and myocarditis) [
<xref ref-type="bibr" rid="CR133">133</xref>
<xref ref-type="bibr" rid="CR142">142</xref>
], and several autoimmune diseases in the CV system [
<xref ref-type="bibr" rid="CR8">8</xref>
]. In the final section of this review, we will briefly overview what is presently known about some of these CV diseases in terms of TRP channel physiology and pathophysiology (see also Table
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Therapeutic potential of TRP channel in cardiovascular disease</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Disease</th>
<th>TRP</th>
<th>The potential benefit for disease
<break></break>
(+): positive regulation is good, (−): negative regulation is good</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="6">Atherosclerosis</td>
<td>C1</td>
<td>C1(+): Vascular contractility in cholesterol depletion
<break></break>
C1(−): Coronary artery disease in metabolic syndrome</td>
<td>[
<xref ref-type="bibr" rid="CR53">53</xref>
,
<xref ref-type="bibr" rid="CR143">143</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
]</td>
</tr>
<tr>
<td rowspan="2">C3</td>
<td>C3(−): The size of atherosclerotic lesions</td>
<td rowspan="2">[
<xref ref-type="bibr" rid="CR145">145</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
]</td>
</tr>
<tr>
<td>C3(−): Adhesion of monocyte in coronary artery ECs</td>
</tr>
<tr>
<td>C6</td>
<td>C6(−): Migration and apoptosis of EC in atherosclerotic arteries (by microRNA-26a)</td>
<td>[
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
]</td>
</tr>
<tr>
<td>C6, V1</td>
<td>C6(−): V1(−): Lysophosphatidylcholine-induced infiltration of monocyte</td>
<td>[
<xref ref-type="bibr" rid="CR149">149</xref>
]</td>
</tr>
<tr>
<td>V1</td>
<td>V1(+): Evodiamine-induced angiogenesis and atherosclerosis
<break></break>
V1(+): ox-LDL-induced foam cell formation by inducing autophagy in vascular SMC
<break></break>
V1(+): ox-LDL-induced lipid accumulation and TNFα-induced inflammation in macrophages
<break></break>
V1(+): Adhesion monocyte and EC</td>
<td>[
<xref ref-type="bibr" rid="CR150">150</xref>
<xref ref-type="bibr" rid="CR153">153</xref>
]</td>
</tr>
<tr>
<td rowspan="2">Neointimal hyperplasia</td>
<td>C1</td>
<td>C1(−): Remodeling of SM</td>
<td>[
<xref ref-type="bibr" rid="CR154">154</xref>
]</td>
</tr>
<tr>
<td>M2</td>
<td>M2(−): Remodeling of SM</td>
<td>[
<xref ref-type="bibr" rid="CR155">155</xref>
]</td>
</tr>
<tr>
<td rowspan="2">Hemorrhagic Shock</td>
<td>C1/C4</td>
<td>C1/C4(−): Development of vasospasm after subarachnoid hemorrhage</td>
<td>[
<xref ref-type="bibr" rid="CR156">156</xref>
]</td>
</tr>
<tr>
<td>V1</td>
<td>V1(−): Survival rates in hemorrhagic shock model</td>
<td>[
<xref ref-type="bibr" rid="CR157">157</xref>
]</td>
</tr>
<tr>
<td>Cardiovasculitis</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td rowspan="7">Cardiac hypertrophy, dilated cardiomyopathy</td>
<td>C1</td>
<td>C1(−): Related to cardiac fibrosis in Duchenne muscular dystrophy model mice
<break></break>
C1(−): Increasing endothelin-1 vasoconstrictor reactivity through Ca
<sup>2+</sup>
/ROS/NFATc3
<break></break>
C1(−): Maladaptive cardiac hypertrophy and failure thorough Ca
<sup>2+</sup>
/calcineurin/NFAT pathway
<break></break>
C1(−): Development of cardiac hypertrophy through Ca
<sup>2+</sup>
/calcineurin/NFAT pathway in hypertension in sleep apnea</td>
<td>[
<xref ref-type="bibr" rid="CR158">158</xref>
<xref ref-type="bibr" rid="CR161">161</xref>
]</td>
</tr>
<tr>
<td>C3</td>
<td>C3(−): Ca
<sup>2+</sup>
-dependent production of CaMK II and ROS in dilated cardiomyopathy
<break></break>
C3(−): Cardiac hypertrophy via GATA4 and TRPC3 (antagonist: miR-26b)
<break></break>
C3(−): Cardiac hypertrophy via a positive feedback mechanism through Ca
<sup>2+</sup>
/calcineurin/NFAT signaling</td>
<td>[
<xref ref-type="bibr" rid="CR162">162</xref>
<xref ref-type="bibr" rid="CR164">164</xref>
]</td>
</tr>
<tr>
<td>C3/C6</td>
<td>C3/C6(−): Hypoxia-induced HIF1α, leading to expression, enhanced Ca
<sup>2+</sup>
/calcineurin signals
<break></break>
C3/C6(−): Ang II-induced cardiac hypertrophy through Ca
<sup>2+</sup>
/calcineurin/NFAT signaling</td>
<td>[
<xref ref-type="bibr" rid="CR118">118</xref>
,
<xref ref-type="bibr" rid="CR165">165</xref>
]</td>
</tr>
<tr>
<td>C6</td>
<td>C6(−): Ca
<sup>2+</sup>
/calcineurin/NFAT regulatory loop that drives pathologic cardiac remodeling
<break></break>
C6(−): Ang II-induced cardiac hypertrophy
<break></break>
C6(−): Development of cardiac hypertrophy through GATA4 and NFATc4</td>
<td>[
<xref ref-type="bibr" rid="CR166">166</xref>
<xref ref-type="bibr" rid="CR168">168</xref>
]</td>
</tr>
<tr>
<td>V1</td>
<td>V1(+): Long-term high-salt diet-induced cardiac hypertrophy and fibrosis
<break></break>
V1(+): Pressure overload-induced cardiac hypertrophy and fibrosis</td>
<td>[
<xref ref-type="bibr" rid="CR169">169</xref>
,
<xref ref-type="bibr" rid="CR170">170</xref>
]</td>
</tr>
<tr>
<td>V2</td>
<td>V2(−): Ventricular dilation and fibrosis through CaMK II and ROS in DCM patients and three DCM model mice</td>
<td>[
<xref ref-type="bibr" rid="CR171">171</xref>
]</td>
</tr>
<tr>
<td>M4</td>
<td>M4(+): Hyperplasia in the cardiac hypertrophy
<break></break>
M4(+): Ang II-induced cardiac hypertrophy through Ca
<sup>2+</sup>
/calcineurin/NFAT pathway</td>
<td>[
<xref ref-type="bibr" rid="CR172">172</xref>
,
<xref ref-type="bibr" rid="CR173">173</xref>
]</td>
</tr>
<tr>
<td>Allograft</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td rowspan="4">Coronary, myocardial infarction</td>
<td>C3/C4/C6</td>
<td>C3/C4/C6(−): After MI induce Ca
<sup>2+</sup>
/calcineurin/NFAT pathway pathway, activate cardiac hypertrophy, reduces contractility reserve
<break></break>
C3/C6(+): MI-induced injury and cardiomyocyte apoptosis are alleviated by BDNF/TrkB axis</td>
<td>[
<xref ref-type="bibr" rid="CR132">132</xref>
,
<xref ref-type="bibr" rid="CR174">174</xref>
]</td>
</tr>
<tr>
<td>M4</td>
<td>M4(−): MI cause cell death and decrease β-adrenergic cardiac reserve</td>
<td>[
<xref ref-type="bibr" rid="CR175">175</xref>
]</td>
</tr>
<tr>
<td>V1
<break></break>
V1</td>
<td>V1(+): Post-MI enhances fibrosis and impairs myocardial contractile performance
<break></break>
V1(+): Acute myocardial ischemia augments the Bezold–Jarisch reflex</td>
<td>[
<xref ref-type="bibr" rid="CR176">176</xref>
,
<xref ref-type="bibr" rid="CR177">177</xref>
]</td>
</tr>
<tr>
<td>V2</td>
<td>V2(+): M1 macrophage infiltration after MI</td>
<td>[
<xref ref-type="bibr" rid="CR178">178</xref>
]</td>
</tr>
<tr>
<td rowspan="3">Ischemia reperfusion</td>
<td>V1</td>
<td>V1(+): Myocardial I/R injury can be protected by 12-lipoxygenase-derived eicosanoids
<break></break>
V1(+): PAR2-induced cardiac protection against I/R injury
<break></break>
V1(+): Cardiac performance in I/R-injured diabetic heart
<break></break>
V1(+): Acute MI</td>
<td>[
<xref ref-type="bibr" rid="CR179">179</xref>
<xref ref-type="bibr" rid="CR182">182</xref>
]</td>
</tr>
<tr>
<td>M2</td>
<td>M2(−): Myocardial I/R injury in neutrophil
<break></break>
M2(−): I/R induce TNFα, caspase-8 activation, ROS production, PARP-1 activation, ADP-ribose production, that contribute to cardiomyocyte cell death</td>
<td>[
<xref ref-type="bibr" rid="CR183">183</xref>
,
<xref ref-type="bibr" rid="CR184">184</xref>
]</td>
</tr>
<tr>
<td>M4</td>
<td>M4(−): I/R injury</td>
<td>[
<xref ref-type="bibr" rid="CR185">185</xref>
]</td>
</tr>
<tr>
<td>Stenosis, systemic lupus erythematosus</td>
<td>C5/C6</td>
<td>C5/C6(−): Linkage analysis data for infantile hypertrophic pyloric stenosis</td>
<td>[
<xref ref-type="bibr" rid="CR186">186</xref>
]</td>
</tr>
<tr>
<td>Autoimmune, autoantibody</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Hypertension, diabetes</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>EC</italic>
endothelial cell,
<italic>SMC</italic>
smooth muscle cell,
<italic>ox-LDL</italic>
oxidized low-density lipoprotein,
<italic>TNFα</italic>
tumor necrosis factor,
<italic>I/R</italic>
ischemia reperfusion,
<italic>ND</italic>
no data,
<italic>Ang II</italic>
angiotensin II,
<italic>miR</italic>
microRNA,
<italic>ADP</italic>
adenosine diphosphate,
<italic>PARP-1</italic>
poly[ADP-ribose] polymerase-1,
<italic>DCM</italic>
dilated cardiomyopathy,
<italic>ROS</italic>
reactive oxygen species,
<italic>MI</italic>
myocardial infarction,
<italic>BDNF</italic>
brain-derived neurotrophic factor,
<italic>TrkB</italic>
tropomyosin receptor kinase B,
<italic>PAR2</italic>
protease-activated receptor-2,
<italic>NFAT</italic>
nuclear factor of activated T cells</p>
</table-wrap-foot>
</table-wrap>
</p>
<sec id="Sec17">
<title>Atherosclerosis</title>
<p>Atherosclerosis is a progressive inflammatory disease that disintegrates the structure and function of blood vessels through lipid deposition and activation of innate/adaptive immune reactions. There are good evidence to suggest that TRP channels are involved in the respective stages of atherosclerosis. This will be described below, in a stage-by-stage manner.</p>
<p>The main initiation factor for atherosclerosis is the oxidized low-density lipoprotein (ox-LDL), which affects the endothelial surface and thereby induces EC dysfunction. But, other inflammatory components/elements (virus, bacteria, toxins, toxic nutrients and metabolites, ambient particles, autoantibody, heat shock protein [
<xref ref-type="bibr" rid="CR187">187</xref>
]; see also above) also promote atherosclerosis. Among TRP channels expressed in the CVS, two reports suggest proatherogenic potential of TRPC6 channel. It is reported that a cardiovascular risk factor, lysophosphatidylcholine (LPC), facilitates TRPC6 translocation to cell membrane causing a rapid Ca
<sup>2+</sup>
influx in EC. This, in turn, induces the externalization of TRPC5, thereby allowing sustained Ca
<sup>2+</sup>
influx through TRPC6/TRPC5 complex. This cascaded TRPC6/TRPC5 activation causes the inhibition of EC migration which is essential for the healing of atherosclerotic arteries [
<xref ref-type="bibr" rid="CR147">147</xref>
]. Endothelial expression of microRNA miR-26a is reduced in the aortic intima of atherogenic ApoE (−/−) mice and ox-LDL-treated human ECs, whereas overexpression of miR-26a induces EC apoptosis. miR-26a acts as a negative regulator of TRPC6, activation of which allows Ca
<sup>2+</sup>
influx activating the mitochondrial apoptotic pathway associated with atherosclerosis. Thus, abnormal TRPC6 activity can induce apoptotic EC death, and application of miR-26a may be able to reduce the atherosclerotic lesion [
<xref ref-type="bibr" rid="CR148">148</xref>
]. These results provide, albeit indirect, evidence to support non-trivial roles of TRPC6 in the progression of atherosclerosis.</p>
<p>At the site of injury, ECs allow the entry of monocytes and lymphocytes into the vessel wall. In the early stage of this process, the adhesion of monocytes to the endothelial surface is supported by increased intracellular Ca
<sup>2+</sup>
concentration in ECs. When the monocyte contacts EC, Ca
<sup>2+</sup>
influx into EC is activated, which further strengthens the adherence of monocytes. Pharmacological inhibition of TRPV1 reduces the number of adherent monocytes, so that activation of TRPV1-mediated Ca
<sup>2+</sup>
influx likely enables strong adhesion of monocytes to EC. In a similar context, TRPC3-mediated Ca
<sup>2+</sup>
influx has been implicated in ATP-induced expression of vascular cell adhesion molecule-1 (VCAM-1) which is critical to recruit monocytes to EC [
<xref ref-type="bibr" rid="CR145">145</xref>
,
<xref ref-type="bibr" rid="CR150">150</xref>
].</p>
<p>After injury, monocytes transmigrate across the damaged endothelium and enter the intimal layer of the vessel wall. Thus, reducing monocyte infiltration is thought to be one of the powerful strategies to attenuate the progression of atherosclerosis. A major atherogenic agent LPC can induce a strong chemotaxis of monocytes which appears to require Ca
<sup>2+</sup>
influx. Pharmacological characterization of LPC-activated Ca
<sup>2+</sup>
-permeable currents strongly suggested that activation of both TRPC and TRPV1 is necessary for the optimal chemotaxic activity [
<xref ref-type="bibr" rid="CR149">149</xref>
]. In this regard, these two TRP channels could be good molecular targets for anti-atherosclerotic therapy.</p>
<p>The monocytes that have migrated into the intima differentiate into macrophages and uptake ox-LDL. These lipid-laden macrophages are known as foam cells. Although the main foam cells are derived from macrophages, VSMCs can also transform to foam cells. Interestingly, activation of TRPV1 by capsaicin impedes the transformation of ox-LDL-treated VSMCs to foam cells by rescuing otherwise impaired autophagy by ox-LDL [
<xref ref-type="bibr" rid="CR151">151</xref>
]. Moreover, TRPV1 activation protected macrophages from ox-LDL-induced lipid accumulation and TNFα-induced inflammation. These results indicate that activation of TRPV1 by capsaicin is another effective strategy to inhibit atherosclerosis.</p>
<p>After transformation, foam cells start to produce inflammatory cytokines. The released inflammatory cytokines trigger further transformation of VSMCs which gain the ability to migrate from the medial to intimal layer. These inflammatory responses make atherosclerotic plaques through necrosis and apoptosis, completing the clinical picture of atherosclerosis. In cultured RAW264 macrophages, LPS-induced production of cytokines (TNFα, IL-6) was shown to depend on TRPV2-mediated Ca
<sup>2+</sup>
influx. Thus, in this late stage of atherosclerosis, targeting TRPV2 may be another novel strategy to suppress inflammatory cytokine production and thus formation of atherosclerotic lesions [
<xref ref-type="bibr" rid="CR188">188</xref>
].</p>
</sec>
<sec id="Sec18">
<title>Vascular stenosis after bypass surgery and angioplasty</title>
<p>Bypass surgery and angioplasty with stenting often causes the vascular injury. Injured VSMCs then undergo transformation from quiescent and contractile to invasive and proliferative states. Such phenotype switching is an important process to recover vascular contractility but can also be part of the cause of occlusive vascular diseases including atherosclerosis and adverse responses accompanying neointimal hyperplasia. Several lines of evidence suggest that excessive (constitutively active) TRPC1 and (ROS-induced) TRPM2 activities in VSMCs are involved in the neointimal hyperplasia induced after vascular cuff injury in rat and mouse models, respectively. These changes were accompanied by enhanced cell cycle activity and inhibited by specific antibodies raised against the third extracellular loop of TRPC1 or TRPM2 channel (E3 antibodies). Similar increased expression of TRPC1 was also observed in the intimal layer of human vein graft samples. Thus, these channels may be novel therapeutic targets for occlusive vascular diseases [
<xref ref-type="bibr" rid="CR154">154</xref>
,
<xref ref-type="bibr" rid="CR155">155</xref>
].</p>
</sec>
<sec id="Sec19">
<title>Cardiac hypertrophy, dilated cardiomyopathy</title>
<p>In cardiomyocytes, Ca
<sup>2+</sup>
transients convey information to both contraction and gene transcription. Changes of cytoplasmic Ca
<sup>2+</sup>
in cardiomyocytes are controlled by a variety of ion channels, the Na
<sup>+</sup>
/Ca
<sup>2+</sup>
exchanger, Ca
<sup>2+</sup>
pumps, and Ca
<sup>2+</sup>
-binding proteins. Several recent studies using animal models have implicated TRP channels in the development of hypertrophy. It has been shown that hypertrophic agonists upregulate the expression of TRPC1, TRPC3, and TRPC6 channels in cardiac myocytes, leading to activation of the Ca
<sup>2+</sup>
-(and ROS)–calmodulin–calcineurin-NFAT pathway which eventually results in cardiac hypertrophy. These hypertrophic changes are a pathological process basically involving inflammatory reactions [
<xref ref-type="bibr" rid="CR136">136</xref>
,
<xref ref-type="bibr" rid="CR189">189</xref>
] and ultimately reduce the cardiac function increasing the mortality of experimental animals [
<xref ref-type="bibr" rid="CR118">118</xref>
,
<xref ref-type="bibr" rid="CR158">158</xref>
<xref ref-type="bibr" rid="CR168">168</xref>
].</p>
<p>More recent studies have added a new connection of TRP channels (TRPV2 and TRPM4) to cardiomyopathy. In the patients of cardiomyopathy as well as in its genetic and chemically induced animal models which typically show ventricular dilation, fibrosis, and severely compromised heart function, the expression of TRPV2 was found to be concentrated on the ventricular sarcolemma. Specific abrogation of TRPV2 activity by either overexpression of the amino-terminal domain of TRPV2 (amino acids 1–387) or treatment with chemical inhibitors ameliorated these pathological changes and the contractile function of the heart and improved the survival of the affected animals [
<xref ref-type="bibr" rid="CR171">171</xref>
]. Since the excessive activity of TRPV2 was associated with increased production of ROS and phosphorylation of Ca
<sup>2+</sup>
/calmodulin-dependent protein kinase II (CaMK II), participation of inflammatory process is strongly suggested for these pathological changes. Thus, targeting TRPV2 may become a new clinical option to treat cardiomyopathy-associated heart failure.</p>
<p>In addition, a recent gene invalidation study showed that the activity of TRPM4 may be a prerequisite to preventing the development of eccentric ventricular hypertrophy of the heart. Indeed, TRPM4 has been shown to negatively regulate angiotensin II-induced cardiac hypertrophy owing its membrane depolarizing ability whereby the magnitude of store-operated Ca
<sup>2+</sup>
entry which activates the calcineurin-NFAT hypertrophic pathway is negatively controlled [
<xref ref-type="bibr" rid="CR172">172</xref>
,
<xref ref-type="bibr" rid="CR173">173</xref>
]. The correlation of these findings with inflammation is however unclear, since immunohistological examination revealed no obvious sign of fibrosis or hypertrophy but rather hyperplasia of smaller sized cardiomyocytes compared with normal ones.</p>
</sec>
<sec id="Sec20">
<title>Myocardial infarction (MI)</title>
<p>In infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response, by which complex cellular processes associated with injury, repair, and remodeling of the infarcted regions are activated [
<xref ref-type="bibr" rid="CR141">141</xref>
]. In the MI period of animal models and human patients, the plasma level of brain-derived neurotrophic factor (BDNF) was found elevated along with tropomyosin-related kinase B (TrkB) and its downstream effector TRPC3 and TRPC6 channels. After BDNF treatment, the infarct size was markedly reduced and cardiac contractility was significantly restored, which seemed to be associated with decreased apoptotic response of cardiomyocytes. Since these beneficial effects of BDNF were reversed by pharmacological or functional inhibition of TRPC3/TRPC6 channels, these channels likely play a protective role against detrimental cardiac remodeling after MI [
<xref ref-type="bibr" rid="CR132">132</xref>
,
<xref ref-type="bibr" rid="CR174">174</xref>
]. In a puzzling contrast, however, adenovirus-mediated overexpression of TRPC3/TRPC4/TRPC6 was reported to induce a hypertrophic response via the NFAT-mediated signaling in adult feline cardiomyocytes and accompany reduction of the contractility and catecholamine response due to increased spontaneous Ca
<sup>2+</sup>
leak from the SR. In the same study, mice treated with MI procedures showed similarly enhanced TRPC1, TRPC3, TRPC4, and TRPC6 expression and Ca
<sup>2+</sup>
channel activity along with induction of hypertrophic genes. These two lines of evidence have been interpreted to indicate the benefits of blocking the TRPC channels that improve post-MI structural remodeling and dysfunction. It is a matter of further investigation of what differences in experimental settings would make such disparate consequences of TRPC channel activation in the post-MI recovery.</p>
<p>In sharp contrast with a protective role of TRPM4 against dilated cardiomyopathy (see above), the deletion of the
<italic>trpm4</italic>
gene in mice rather improved survival and β-adrenergic cardiac reserve after experimentally induced ischemic heart failure [
<xref ref-type="bibr" rid="CR175">175</xref>
,
<xref ref-type="bibr" rid="CR185">185</xref>
]. In addition, several lines of evidence support the ameliorative role of TRPV1 in myocardial infarction as found in atherosclerosis [
<xref ref-type="bibr" rid="CR176">176</xref>
,
<xref ref-type="bibr" rid="CR177">177</xref>
,
<xref ref-type="bibr" rid="CR179">179</xref>
<xref ref-type="bibr" rid="CR182">182</xref>
].</p>
</sec>
<sec id="Sec21">
<title>Ischemia/reperfusion injury</title>
<p>Reperfusion of the ischemic myocardium is essential for rescuing it from the death. However, reperfusion itself causes additional myocardial injury termed “ischemia/reperfusion (I/R) injury” [
<xref ref-type="bibr" rid="CR190">190</xref>
]. I/R injury in the heart occurs through innate immune responses involving TLR (TLR2, TLR4) and the Myd88- and Trif-dependent NF-κB-interferon-3 pathway, activation of which induces the release of proinflammatory and immunomodulatory cytokines [
<xref ref-type="bibr" rid="CR142">142</xref>
]. Moreover, oxidative stress-induced acute inflammatory response is implicated in the development of I/R injury [
<xref ref-type="bibr" rid="CR191">191</xref>
].</p>
<p>There are two conflicting reports linking TRPM2 channel to I/R injury. One study suggested that activation of neutrophil TRPM2 channel by ROS exacerbated myocardial I/R injury by upregulating the expression of endothelial adhesion molecules MAC-1 and LFA-1. This then resulted in a stronger adhesion of neutrophils on the coronary EC surface. Neutrophil accumulation in the myocardium is a key process that induces myocardial injury [
<xref ref-type="bibr" rid="CR191">191</xref>
]. Thus, specific inhibition of neutrophil TRPM2 activity may serve as an effective means to mitigate the exacerbation of myocardial infarction. However, in a striking contrast to this view, an independent study proposed an opposing and more complex hypothesis. According to the findings of this study, genetic deletion of TRPM2 exacerbated the extent of myocardial dysfunction after I/R injury via increased generation (upregulation of NADPH oxidase) and decreased scavenging capacity (downregulation of superoxide anion disulmutases) of ROS. As pointed out by the authors themselves, the discrepancies between the above two studies may reflect small but essential differences in experimental designs, as well as the use of global knockout mice with different exon-targeting invalidation strategies [
<xref ref-type="bibr" rid="CR122">122</xref>
]. In any case, it is almost undoubted that TRPM2 channel is among central players in immunoinflammatory reactions in the cardiovascular disease and thus a promising therapeutic target.</p>
</sec>
</sec>
<sec id="Sec22" sec-type="conclusion">
<title>Concluding remarks and perspectives</title>
<p>In this review, we summarized the current knowledge linking inflammation and TRP channels and attempted to provide new insights into the pathogenesis of various inflammatory CV diseases (refer to Table
<xref rid="Tab1" ref-type="table">1</xref>
). In addition, we described the evidence that dysregulation or altered expression of TRP channels are in close association with inflammasome activation and the pathogenesis of CV diseases. Our major but tentative conclusions drawn from this review writing are as follows: TRPC1, TRPC3, TRPC6, and TRPM7 may be the most promising therapeutic targets in the subacute or chronic stages of some CV diseases (i.e., remodeling, proliferation), presumably via inhibition of persistent inflammasome activation as well as aberrant regulation of cytokine production and transcription factor activity. In case of ischemia/reperfusion, the molecules’ sensing/transducing oxidative stress appears contributory to the initiation of inflammation, wherein TRPM2 channel is the most plausible candidate (although roles of other oxidative stress-sensitive channels TRPV1, TRPM7, TRPA1, TRPC1, TRPC3, and TRPC6 should not be underestimated). Finally, dietary capsaicin, which appears to act as both sensory nerve (e.g., CLP sepsis model) and VSMC (e.g., atherosclerosis), TRPV1 activators, may have broad relevance to improving CV disorders through its anti-inflammatory actions.</p>
<p>The current research on the immunopathophysiology of TRP channels is still in its infant stage. It is thus strongly anticipated that further extensive investigations will greatly improve our yet premature understanding about it, which will pave a way to developing new effective therapies for inflammatory CV diseases.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>This submission is related to Role of TRP Ion Channels in Physiology and Pathology - Dr. Armen Akopian</p>
</fn>
</fn-group>
<ack>
<p>This work has been in part supported by grants-in-aid from the Ministry of Science, Education, and Culture, Japan, to T.N. (No. 15K08197) and R.I. (No. 22136008; for Scientific Research on Innovative Areas).</p>
<sec id="FPar1">
<title>Conflict of interest</title>
<p>None.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tousoulis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Psarros</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Demosthenous</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Antoniades</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stefanadis</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins</article-title>
<source>J Am Coll Cardiol</source>
<year>2014</year>
<volume>63</volume>
<issue>23</issue>
<fpage>2491</fpage>
<lpage>2502</lpage>
<pub-id pub-id-type="pmid">24613322</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Virdis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schiffrin</surname>
<given-names>EL</given-names>
</name>
</person-group>
<article-title>Vascular inflammation: a role in vascular disease in hypertension?</article-title>
<source>Curr Opin Nephrol Hypertens</source>
<year>2003</year>
<volume>12</volume>
<issue>2</issue>
<fpage>181</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="pmid">12589179</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golia</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Limongelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Natale</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fimiani</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maddaloni</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Pariggiano</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Crisci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>D’Acierno</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Di Palma</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Conte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Golino</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Calabro</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Calabro</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Inflammation and cardiovascular disease: from pathogenesis to therapeutic target</article-title>
<source>Curr Atheroscler Rep</source>
<year>2014</year>
<volume>16</volume>
<issue>9</issue>
<fpage>435</fpage>
<pub-id pub-id-type="pmid">25037581</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Atherosclerosis--an inflammatory disease</article-title>
<source>N Engl J Med</source>
<year>1999</year>
<volume>340</volume>
<issue>2</issue>
<fpage>115</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="pmid">9887164</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The pathogenesis of atherosclerosis: a perspective for the 1990s</article-title>
<source>Nature</source>
<year>1993</year>
<volume>362</volume>
<issue>6423</issue>
<fpage>801</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="pmid">8479518</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hansson</surname>
<given-names>GK</given-names>
</name>
</person-group>
<article-title>Inflammation, atherosclerosis, and coronary artery disease</article-title>
<source>N Engl J Med</source>
<year>2005</year>
<volume>352</volume>
<issue>16</issue>
<fpage>1685</fpage>
<lpage>1695</lpage>
<pub-id pub-id-type="pmid">15843671</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masumoto</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ayukawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sarvotham</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kishino</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Niikawa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hidaka</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Katsuyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Higuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sagara</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells</article-title>
<source>J biol Chem</source>
<year>1999</year>
<volume>274</volume>
<issue>48</issue>
<fpage>33835</fpage>
<lpage>33838</lpage>
<pub-id pub-id-type="pmid">10567338</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broderick</surname>
<given-names>L</given-names>
</name>
<name>
<surname>De Nardo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Latz</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The inflammasomes and autoinflammatory syndromes</article-title>
<source>Annu Rev Pathol</source>
<year>2015</year>
<volume>10</volume>
<fpage>395</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="pmid">25423351</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pastrana</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Mallilankaraman</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Madesh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>XF</given-names>
</name>
</person-group>
<article-title>Inflammasomes: sensors of metabolic stresses for vascular inflammation</article-title>
<source>Front Biosci (Landmark edition)</source>
<year>2013</year>
<volume>18</volume>
<fpage>638</fpage>
<lpage>649</lpage>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abais</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Boini</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>PL</given-names>
</name>
</person-group>
<article-title>Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?</article-title>
<source>Antioxid Redox Signal</source>
<year>2015</year>
<volume>22</volume>
<issue>13</issue>
<fpage>1111</fpage>
<lpage>1129</lpage>
<pub-id pub-id-type="pmid">25330206</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Latz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Stutz</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Activation and regulation of the inflammasomes</article-title>
<source>Nat Rev Immunol</source>
<year>2013</year>
<volume>13</volume>
<issue>6</issue>
<fpage>397</fpage>
<lpage>411</lpage>
<pub-id pub-id-type="pmid">23702978</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feske</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Calcium signalling in lymphocyte activation and disease</article-title>
<source>Nat Rev Immunol</source>
<year>2007</year>
<volume>7</volume>
<issue>9</issue>
<fpage>690</fpage>
<lpage>702</lpage>
<pub-id pub-id-type="pmid">17703229</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>The plant immune system</article-title>
<source>Nature</source>
<year>2006</year>
<volume>444</volume>
<issue>7117</issue>
<fpage>323</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">17108957</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janeway</surname>
<given-names>CA</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Medzhitov</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Innate immune recognition</article-title>
<source>Annu Rev Immunol</source>
<year>2002</year>
<volume>20</volume>
<fpage>197</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">11861602</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seong</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Matzinger</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses</article-title>
<source>Nat Rev Immunol</source>
<year>2004</year>
<volume>4</volume>
<issue>6</issue>
<fpage>469</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="pmid">15173835</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ong</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Ohtake</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Strickland</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Boguniewicz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ganz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>DY</given-names>
</name>
</person-group>
<article-title>Endogenous antimicrobial peptides and skin infections in atopic dermatitis</article-title>
<source>N Engl J Med</source>
<year>2002</year>
<volume>347</volume>
<issue>15</issue>
<fpage>1151</fpage>
<lpage>1160</lpage>
<pub-id pub-id-type="pmid">12374875</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Kleijn</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pasterkamp</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Toll-like receptors in cardiovascular diseases</article-title>
<source>Cardiovasc Res</source>
<year>2003</year>
<volume>60</volume>
<issue>1</issue>
<fpage>58</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="pmid">14522407</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strowig</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Henao-Mejia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elinav</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Inflammasomes in health and disease</article-title>
<source>Nature</source>
<year>2012</year>
<volume>481</volume>
<issue>7381</issue>
<fpage>278</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="pmid">22258606</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Santoni</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cardinali</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Morelli</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Santoni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nabissi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Amantini</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons</article-title>
<source>J Neuroinflammation</source>
<year>2015</year>
<volume>12</volume>
<fpage>21</fpage>
<pub-id pub-id-type="pmid">25644504</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meseguer</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Alpizar</surname>
<given-names>YA</given-names>
</name>
<name>
<surname>Luis</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tajada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Denlinger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fajardo</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Manenschijn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Fernandez-Pena</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Talavera</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kichko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Navia</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Senaris</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Reeh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Perez-Garcia</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Lopez-Lopez</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Voets</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Belmonte</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Talavera</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Viana</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins</article-title>
<source>Nat Commun</source>
<year>2014</year>
<volume>5</volume>
<fpage>3125</fpage>
<pub-id pub-id-type="pmid">24445575</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tauseef</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Knezevic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chava</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sukriti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gianaris</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Obukhov</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Schraufnagel</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Birnbaumer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Mehta</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation</article-title>
<source>J Exp Med</source>
<year>2012</year>
<volume>209</volume>
<issue>11</issue>
<fpage>1953</fpage>
<lpage>1968</lpage>
<pub-id pub-id-type="pmid">23045603</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becerra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Echeverria</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Varela</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sarmiento</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Armisen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nunez-Villena</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Montecinos</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death</article-title>
<source>Cardiovasc Res</source>
<year>2011</year>
<volume>91</volume>
<issue>4</issue>
<fpage>677</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="pmid">21565835</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Echeverria</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Montorfano</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hermosilla</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Armisen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Velasquez</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Cabello-Verrugio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Varela</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>4</issue>
<pub-id pub-id-type="pmid">24710004</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assas</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Miyan</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Pennock</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa</article-title>
<source>Mucosal Immunol</source>
<year>2014</year>
<volume>7</volume>
<issue>6</issue>
<fpage>1283</fpage>
<lpage>1289</lpage>
<pub-id pub-id-type="pmid">25183366</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<mixed-citation publication-type="other">Numata T, Kiyonaka S, Kato K, Takahashi N, Mori Y (2011) Activation of TRP Channels in Mammalian Systems. In: Zhu MX (ed) TRP Channels. CRC Press LLc., Boca Raton (FL)</mixed-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramsey</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Delling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Clapham</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>An introduction to TRP channels</article-title>
<source>Annu Rev Physiol</source>
<year>2006</year>
<volume>68</volume>
<fpage>619</fpage>
<lpage>647</lpage>
<pub-id pub-id-type="pmid">16460286</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilius</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Owsianik</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Voets</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Transient receptor potential cation channels in disease</article-title>
<source>Physiol Rev</source>
<year>2007</year>
<volume>87</volume>
<issue>1</issue>
<fpage>165</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="pmid">17237345</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clapham</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Montell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Julius</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels</article-title>
<source>Pharmacol Rev</source>
<year>2003</year>
<volume>55</volume>
<issue>4</issue>
<fpage>591</fpage>
<lpage>596</lpage>
<pub-id pub-id-type="pmid">14657417</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Owsianik</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Talavera</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Voets</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nilius</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Permeation and selectivity of TRP channels</article-title>
<source>Annu Rev Physiol</source>
<year>2006</year>
<volume>68</volume>
<fpage>685</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">16460288</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ulasli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gurses</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Bayraktar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yumrutas</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Oztuzcu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Igci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Igci</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Cakmak</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Arslan</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family</article-title>
<source>Mol Biol Rep</source>
<year>2014</year>
<volume>41</volume>
<issue>3</issue>
<fpage>1703</fpage>
<lpage>1711</lpage>
<pub-id pub-id-type="pmid">24413991</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdullah</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Heaney</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Cosby</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>McGarvey</surname>
<given-names>LP</given-names>
</name>
</person-group>
<article-title>Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity</article-title>
<source>Thorax</source>
<year>2014</year>
<volume>69</volume>
<issue>1</issue>
<fpage>46</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">24002057</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Privratsky</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Birnbaumer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Transient Receptor Potential Channel 1 Deficiency Impairs Host Defense and Proinflammatory Responses to Bacterial Infection by Regulating Protein Kinase Calpha Signaling</article-title>
<source>Mol Cell Biol</source>
<year>2015</year>
<volume>35</volume>
<issue>16</issue>
<fpage>2729</fpage>
<lpage>2739</lpage>
<pub-id pub-id-type="pmid">26031335</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Zhen</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Sheu</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Chua</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>FY</given-names>
</name>
<name>
<surname>Yip</surname>
<given-names>HK</given-names>
</name>
</person-group>
<article-title>Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model</article-title>
<source>Stem Cells Int</source>
<year>2014</year>
<volume>2014</volume>
<fpage>316214</fpage>
<pub-id pub-id-type="pmid">25587286</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chauhan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pani</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Quenumzangbe</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>BB</given-names>
</name>
</person-group>
<article-title>Helminth induced suppression of macrophage activation is correlated with inhibition of calcium channel activity</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>7</issue>
<pub-id pub-id-type="pmid">25013939</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Py</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Penumaka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kober</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lipinski</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Henry</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Clapham</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Caspase-11 controls interleukin-1beta release through degradation of TRPC1</article-title>
<source>Cell Rep</source>
<year>2014</year>
<volume>6</volume>
<issue>6</issue>
<fpage>1122</fpage>
<lpage>1128</lpage>
<pub-id pub-id-type="pmid">24630989</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vohra</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Sathish</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kiel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jerde</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pabelick</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>YS</given-names>
</name>
</person-group>
<article-title>TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle</article-title>
<source>Biochim Biophys Acta</source>
<year>2013</year>
<volume>1833</volume>
<issue>12</issue>
<fpage>2953</fpage>
<lpage>2960</lpage>
<pub-id pub-id-type="pmid">23899746</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarmiento</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Montorfano</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Caceres</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Echeverria</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cabello-Verrugio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cerda</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Tapia</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-kappaB pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity</article-title>
<source>Int J Biochem Cell Biol</source>
<year>2014</year>
<volume>55</volume>
<fpage>11</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">25130439</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knowles</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Heizer</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ogden</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Andreasen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shapland</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kucera</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mogan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Humann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Perraud</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<issue>28</issue>
<fpage>11578</fpage>
<lpage>11583</lpage>
<pub-id pub-id-type="pmid">21709234</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Numata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Transient receptor potential melastatin 2 protects mice against polymicrobial sepsis by enhancing bacterial clearance</article-title>
<source>Anesthesiology</source>
<year>2014</year>
<volume>121</volume>
<issue>2</issue>
<fpage>336</fpage>
<lpage>351</lpage>
<pub-id pub-id-type="pmid">24781495</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hwang</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>HC</given-names>
</name>
</person-group>
<article-title>Association of SLC6A4 5-HTTLPR and TRPV1 945G>C with functional dyspepsia in Korea</article-title>
<source>J Gastroenterol Hepatol</source>
<year>2014</year>
<volume>29</volume>
<issue>10</issue>
<fpage>1770</fpage>
<lpage>1777</lpage>
<pub-id pub-id-type="pmid">24720453</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guptill</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Khaibullina</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Spornick</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mannes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Iadarola</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Quezado</surname>
<given-names>ZM</given-names>
</name>
</person-group>
<article-title>Disruption of the transient receptor potential vanilloid 1 can affect survival, bacterial clearance, and cytokine gene expression during murine sepsis</article-title>
<source>Anesthesiology</source>
<year>2011</year>
<volume>114</volume>
<issue>5</issue>
<fpage>1190</fpage>
<lpage>1199</lpage>
<pub-id pub-id-type="pmid">21383614</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wanner</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Garami</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pakai</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Gavva</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Coimbra</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Romanovsky</surname>
<given-names>AA</given-names>
</name>
</person-group>
<article-title>Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory</article-title>
<source>Cell Cycle (Georgetown, Tex)</source>
<year>2012</year>
<volume>11</volume>
<issue>2</issue>
<fpage>343</fpage>
<lpage>349</lpage>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shin</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Namkoong</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Arote</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Capsaicin regulates the NF-kappaB pathway in salivary gland inflammation</article-title>
<source>J Dent Res</source>
<year>2013</year>
<volume>92</volume>
<issue>6</issue>
<fpage>547</fpage>
<lpage>552</lpage>
<pub-id pub-id-type="pmid">23603336</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mozsik</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Capsaicin as new orally applicable gastroprotective and therapeutic drug alone or in combination with nonsteroidal anti-inflammatory drugs in healthy human subjects and in patients</article-title>
<source>Prog Drug Res Fortschr Der Arzneimittelforschung Prog Des Rech Pharm</source>
<year>2014</year>
<volume>68</volume>
<fpage>209</fpage>
<lpage>258</lpage>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandes</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Smillie</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Purcell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rivett</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Alam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Howat</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Keeble</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Riffo-Vasquez</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bruce</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Brain</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome</article-title>
<source>J Immunol</source>
<year>2012</year>
<volume>188</volume>
<issue>11</issue>
<fpage>5741</fpage>
<lpage>5751</lpage>
<pub-id pub-id-type="pmid">22547700</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffmeister</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Trevisan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rossato</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Role of TRPV1 in nociception and edema induced by monosodium urate crystals in rats</article-title>
<source>Pain</source>
<year>2011</year>
<volume>152</volume>
<issue>8</issue>
<fpage>1777</fpage>
<lpage>1788</lpage>
<pub-id pub-id-type="pmid">21550723</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moilanen</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Hamalainen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lehtimaki</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Nieminen</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Moilanen</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<issue>2</issue>
<pub-id pub-id-type="pmid">25658427</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trevisan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hoffmeister</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rossato</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ineu</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Guerra</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Materazzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fusi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nassini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Geppetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents</article-title>
<source>Arthritis Rheum</source>
<year>2013</year>
<volume>65</volume>
<issue>11</issue>
<fpage>2984</fpage>
<lpage>2995</lpage>
<pub-id pub-id-type="pmid">23918657</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trevisan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hoffmeister</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rossato</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Fusi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tonello</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Minocci</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Guerra</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Materazzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nassini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Geppetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout</article-title>
<source>Free Radic Biol Med</source>
<year>2014</year>
<volume>72</volume>
<fpage>200</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">24780252</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffmeister</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rossato</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Trevisan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Guerra</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Participation of the TRPV1 receptor in the development of acute gout attacks</article-title>
<source>Rheumatol (Oxford, England)</source>
<year>2014</year>
<volume>53</volume>
<issue>2</issue>
<fpage>240</fpage>
<lpage>249</lpage>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tall</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Yvan-Charvet</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Cholesterol, inflammation and innate immunity</article-title>
<source>Nat Rev Immunol</source>
<year>2015</year>
<volume>15</volume>
<issue>2</issue>
<fpage>104</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">25614320</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenhouse-Dantsker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mehta</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Levitan</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Regulation of ion channels by membrane lipids</article-title>
<source>Compr Physiol</source>
<year>2012</year>
<volume>2</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">23728970</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergdahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Dreja</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Adner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beech</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Broman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hellstrand</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sward</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1</article-title>
<source>Circ Res</source>
<year>2003</year>
<volume>93</volume>
<issue>9</issue>
<fpage>839</fpage>
<lpage>847</lpage>
<pub-id pub-id-type="pmid">14551243</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graziani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rosker</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kohlwein</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>MX</given-names>
</name>
<name>
<surname>Romanin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sattler</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Groschner</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Poteser</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy</article-title>
<source>Biochem J</source>
<year>2006</year>
<volume>396</volume>
<issue>1</issue>
<fpage>147</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="pmid">16448384</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sukumaran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Derry</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sahmoun</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>BB</given-names>
</name>
</person-group>
<article-title>Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells</article-title>
<source>Biochim Biophys Acta</source>
<year>2014</year>
<volume>1843</volume>
<issue>9</issue>
<fpage>1839</fpage>
<lpage>1850</lpage>
<pub-id pub-id-type="pmid">24769209</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naylor</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Milligan</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sukumar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sedo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yuldasheva</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Majeed</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Beri</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>McKeown</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Harteneck</surname>
<given-names>C</given-names>
</name>
<name>
<surname>O’Regan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wheatcroft</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Kearney</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Beech</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction</article-title>
<source>Circ Res</source>
<year>2010</year>
<volume>106</volume>
<issue>9</issue>
<fpage>1507</fpage>
<lpage>1515</lpage>
<pub-id pub-id-type="pmid">20360246</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fonfria</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>IC</given-names>
</name>
<name>
<surname>Boyfield</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Skaper</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Benham</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>McNulty</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures</article-title>
<source>J Neurochem</source>
<year>2005</year>
<volume>95</volume>
<issue>3</issue>
<fpage>715</fpage>
<lpage>723</lpage>
<pub-id pub-id-type="pmid">16104849</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Girouard</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Anrather</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Iadecola</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction</article-title>
<source>Nat Commun</source>
<year>2014</year>
<volume>5</volume>
<fpage>5318</fpage>
<pub-id pub-id-type="pmid">25351853</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koizumi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Endothelial Dysfunction and Amyloid-beta-Induced Neurovascular Alterations</article-title>
<source>Cell Mol Neurobiol</source>
<year>2015</year>
<pub-id pub-id-type="pmid">26328781</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schilling</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eder</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Amyloid-beta-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia</article-title>
<source>J Cell Physiol</source>
<year>2011</year>
<volume>226</volume>
<issue>12</issue>
<fpage>3295</fpage>
<lpage>3302</lpage>
<pub-id pub-id-type="pmid">21321937</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronco</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Grolla</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Glasnov</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Canonico</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Verkhratsky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Genazzani</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Differential deregulation of astrocytic calcium signalling by amyloid-beta, TNFalpha, IL-1beta and LPS</article-title>
<source>Cell Calcium</source>
<year>2014</year>
<volume>55</volume>
<issue>4</issue>
<fpage>219</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="pmid">24656753</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bai</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Lipski</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Involvement of TRPV4 channels in Abeta(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling</article-title>
<source>Neurotoxicology</source>
<year>2014</year>
<volume>41</volume>
<fpage>64</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">24457011</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linde</surname>
<given-names>CI</given-names>
</name>
<name>
<surname>Baryshnikov</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Mazzocco-Spezzia</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Golovina</surname>
<given-names>VA</given-names>
</name>
</person-group>
<article-title>Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2011</year>
<volume>300</volume>
<issue>6</issue>
<fpage>C1502</fpage>
<lpage>1512</lpage>
<pub-id pub-id-type="pmid">21368296</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamel</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Cerebral circulation: function and dysfunction in Alzheimer’s disease</article-title>
<source>J Cardiovasc Pharmacol</source>
<year>2015</year>
<volume>65</volume>
<issue>4</issue>
<fpage>317</fpage>
<lpage>324</lpage>
<pub-id pub-id-type="pmid">25384195</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hamel</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer’s disease</article-title>
<source>Br J Pharmacol</source>
<year>2013</year>
<volume>170</volume>
<issue>3</issue>
<fpage>661</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="pmid">23889563</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bessac</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Jordt</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control</article-title>
<source>Physiol (Bethesda, Md)</source>
<year>2008</year>
<volume>23</volume>
<fpage>360</fpage>
<lpage>370</lpage>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Moreno-Vinasco</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Siegler</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Usatyuk</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Samet</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Geyh</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Breysse</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Natarajan</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation</article-title>
<source>Part Fibre Toxicol</source>
<year>2012</year>
<volume>9</volume>
<fpage>35</fpage>
<pub-id pub-id-type="pmid">22931549</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stott</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Hadoke</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Newby</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and beta1 adrenoreceptors</article-title>
<source>Part Fibre Toxicol</source>
<year>2014</year>
<volume>11</volume>
<fpage>12</fpage>
<pub-id pub-id-type="pmid">24568236</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deering-Rice</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Johansen</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yost</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Veranth</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Reilly</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material</article-title>
<source>Mol Pharmacol</source>
<year>2012</year>
<volume>81</volume>
<issue>3</issue>
<fpage>411</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="pmid">22155782</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghelfi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rhoden</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Wellenius</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gonzalez-Flecha</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated ambient particles are mediated by TRP-dependent pulmonary reflexes</article-title>
<source>Toxicol Scie Off J Soc Toxicol</source>
<year>2008</year>
<volume>102</volume>
<issue>2</issue>
<fpage>328</fpage>
<lpage>336</lpage>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agopyan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Head</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>TRPV1 receptors mediate particulate matter-induced apoptosis</article-title>
<source>Am J Physiol Lung Cell Mol Physiol</source>
<year>2004</year>
<volume>286</volume>
<issue>3</issue>
<fpage>L563</fpage>
<lpage>572</lpage>
<pub-id pub-id-type="pmid">14633515</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agopyan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bhatti</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells</article-title>
<source>Toxicol Appl Pharmacol</source>
<year>2003</year>
<volume>192</volume>
<issue>1</issue>
<fpage>21</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">14554100</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shapiro</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Deering-Rice</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Hughen</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Light</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Veranth</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Reilly</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material</article-title>
<source>Chem Res Toxicol</source>
<year>2013</year>
<volume>26</volume>
<issue>5</issue>
<fpage>750</fpage>
<lpage>758</lpage>
<pub-id pub-id-type="pmid">23541125</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deering-Rice</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Romero</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hughen</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Light</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Yost</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Veranth</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Reilly</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP</article-title>
<source>Chem Res Toxicol</source>
<year>2011</year>
<volume>24</volume>
<issue>6</issue>
<fpage>950</fpage>
<lpage>959</lpage>
<pub-id pub-id-type="pmid">21591660</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kanju</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chew</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Gilmour</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ghio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Liedtke</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles</article-title>
<source>Environ Health Perspect</source>
<year>2011</year>
<volume>119</volume>
<issue>6</issue>
<fpage>784</fpage>
<lpage>793</lpage>
<pub-id pub-id-type="pmid">21245013</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deretic</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Autophagy in infection, inflammation and immunity</article-title>
<source>Nat Rev Immunol</source>
<year>2013</year>
<volume>13</volume>
<issue>10</issue>
<fpage>722</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="pmid">24064518</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sergin</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Razani</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis</article-title>
<source>Trends Endocrinol Metab: TEM</source>
<year>2014</year>
<volume>25</volume>
<issue>5</issue>
<fpage>225</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="pmid">24746519</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lawas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bryant-Genevier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Southall</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Marugan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2015</year>
<volume>112</volume>
<issue>11</issue>
<fpage>E1373</fpage>
<lpage>1381</lpage>
<pub-id pub-id-type="pmid">25733853</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onyenwoke</surname>
<given-names>RU</given-names>
</name>
<name>
<surname>Sexton</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Forsberg</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Major</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Brenman</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>The mucolipidosis IV Ca2+ channel TRPML1 (MCOLN1) is regulated by the TOR kinase</article-title>
<source>Biochemical J</source>
<year>2015</year>
<volume>470</volume>
<issue>3</issue>
<fpage>331</fpage>
<lpage>342</lpage>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes</article-title>
<source>Autophagy</source>
<year>2011</year>
<volume>7</volume>
<issue>11</issue>
<fpage>1308</fpage>
<lpage>1315</lpage>
<pub-id pub-id-type="pmid">21997367</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Medina</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Di Paola</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Peluso</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Armani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>De Stefani</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Venditti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Montefusco</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Scotto-Rosato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prezioso</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Forrester</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Settembre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sandri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rizzuto</surname>
<given-names>R</given-names>
</name>
<name>
<surname>De Matteis</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ballabio</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB</article-title>
<source>Nat Cell Biol</source>
<year>2015</year>
<volume>17</volume>
<issue>3</issue>
<fpage>288</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="pmid">25720963</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curcio-Morelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Charles</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Micsenyi</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Venugopal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Browning</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Dobrenis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cotman</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Walkley</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Slaugenhaupt</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Macroautophagy is defective in mucolipin-1-deficient mouse neurons</article-title>
<source>Neurobiol Dis</source>
<year>2010</year>
<volume>40</volume>
<issue>2</issue>
<fpage>370</fpage>
<lpage>377</lpage>
<pub-id pub-id-type="pmid">20600908</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venugopal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mesires</surname>
<given-names>NT</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Curcio-Morelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Laplante</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dice</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Slaugenhaupt</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Chaperone-mediated autophagy is defective in mucolipidosis type IV</article-title>
<source>J Cell Physiol</source>
<year>2009</year>
<volume>219</volume>
<issue>2</issue>
<fpage>344</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="pmid">19117012</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeevi</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Lev</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Frumkin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Minke</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bach</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy</article-title>
<source>J Cell Sci</source>
<year>2010</year>
<volume>123</volume>
<issue>Pt 18</issue>
<fpage>3112</fpage>
<lpage>3124</lpage>
<pub-id pub-id-type="pmid">20736310</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>McBrayer</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Haslett</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lie</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Coffey</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Kompella</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Lloyd-Evans</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nixon</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification</article-title>
<source>Cell reports</source>
<year>2015</year>
<volume>12</volume>
<issue>9</issue>
<fpage>1430</fpage>
<lpage>1444</lpage>
<pub-id pub-id-type="pmid">26299959</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venkatachalam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Elsaesser</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nikolaeva</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Broadie</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Montell</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells</article-title>
<source>Cell</source>
<year>2008</year>
<volume>135</volume>
<issue>5</issue>
<fpage>838</fpage>
<lpage>851</lpage>
<pub-id pub-id-type="pmid">19041749</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martina</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Lelouvier</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Puertollano</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway</article-title>
<source>Traffic (Copenhagen, Denmark)</source>
<year>2009</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1143</fpage>
<lpage>1156</lpage>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Soyombo</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Tjon-Kon-Sang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>So</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Muallem</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy</article-title>
<source>Traffic (Copenhagen, Denmark)</source>
<year>2009</year>
<volume>10</volume>
<issue>8</issue>
<fpage>1157</fpage>
<lpage>1167</lpage>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2014</year>
<volume>443</volume>
<issue>1</issue>
<fpage>56</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="pmid">24269818</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion</article-title>
<source>Cell</source>
<year>2015</year>
<volume>161</volume>
<issue>6</issue>
<fpage>1306</fpage>
<lpage>1319</lpage>
<pub-id pub-id-type="pmid">26027738</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Masker</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death</article-title>
<source>J Biol Chem</source>
<year>2003</year>
<volume>278</volume>
<issue>18</issue>
<fpage>16222</fpage>
<lpage>16229</lpage>
<pub-id pub-id-type="pmid">12594222</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Shanmughapriya</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Keefer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Merali</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hirschler-Laszkiewicz</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Barrero</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kawasawa</surname>
<given-names>YI</given-names>
</name>
<name>
<surname>Bayerl</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barbour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Madesh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2alpha</article-title>
<source>J Biol Chem</source>
<year>2014</year>
<volume>289</volume>
<issue>52</issue>
<fpage>36284</fpage>
<lpage>36302</lpage>
<pub-id pub-id-type="pmid">25391657</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wyrsch</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Blenn</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bader</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Althaus</surname>
<given-names>FR</given-names>
</name>
</person-group>
<article-title>Cell death and autophagy under oxidative stress: roles of poly(ADP-Ribose) polymerases and Ca(2+)</article-title>
<source>Mol Cell Biol</source>
<year>2012</year>
<volume>32</volume>
<issue>17</issue>
<fpage>3541</fpage>
<lpage>3553</lpage>
<pub-id pub-id-type="pmid">22751932</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atsumi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sabharwal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bando</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Arima</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Kamimura</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ogura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hirano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Inflammation amplifier, a new paradigm in cancer biology</article-title>
<source>Cancer Res</source>
<year>2014</year>
<volume>74</volume>
<issue>1</issue>
<fpage>8</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">24362915</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pardoll</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jove</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>STATs in cancer inflammation and immunity: a leading role for STAT3</article-title>
<source>Nat Rev Cancer</source>
<year>2009</year>
<volume>9</volume>
<issue>11</issue>
<fpage>798</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="pmid">19851315</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Rathinam</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Martens</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Martinot</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Kornfeld</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fitzgerald</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Sassetti</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta</article-title>
<source>Nat Immunol</source>
<year>2013</year>
<volume>14</volume>
<issue>1</issue>
<fpage>52</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">23160153</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fric</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zelante</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ricciardi-Castagnoli</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Phagocytosis of Particulate Antigens - All Roads Lead to Calcineurin/NFAT Signaling Pathway</article-title>
<source>Front Immunol</source>
<year>2014</year>
<volume>4</volume>
<fpage>513</fpage>
<pub-id pub-id-type="pmid">24409187</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rossol</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pierer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raulien</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Quandt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Meusch</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Rothe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schubert</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schoneberg</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schaefer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Krugel</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Smajilovic</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brauner-Osborne</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Baerwald</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors</article-title>
<source>Nat Commun</source>
<year>2012</year>
<volume>3</volume>
<fpage>1329</fpage>
<pub-id pub-id-type="pmid">23271661</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oeckinghaus</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The NF-kappaB family of transcription factors and its regulation</article-title>
<source>Cold Spring Harbor Perspect Biol</source>
<year>2009</year>
<volume>1</volume>
<issue>4</issue>
<fpage>a000034</fpage>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tabary</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Boncoeur</surname>
<given-names>E</given-names>
</name>
<name>
<surname>de Martin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pepperkok</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jacquot</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells</article-title>
<source>Cell Signal</source>
<year>2006</year>
<volume>18</volume>
<issue>5</issue>
<fpage>652</fpage>
<lpage>660</lpage>
<pub-id pub-id-type="pmid">16084692</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>She</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Cumulated Ca2(+) spike duration underlies Ca2(+) oscillation frequency-regulated NFkappaB transcriptional activity</article-title>
<source>J Cell Sci</source>
<year>2011</year>
<volume>124</volume>
<issue>Pt 15</issue>
<fpage>2591</fpage>
<lpage>2601</lpage>
<pub-id pub-id-type="pmid">21750195</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yokoseki</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kitabayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Morishita</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kaneda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ogihara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Futamatsu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Isobe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>cis Element decoy against nuclear factor-kappaB attenuates development of experimental autoimmune myocarditis in rats</article-title>
<source>Circ Res</source>
<year>2001</year>
<volume>89</volume>
<issue>10</issue>
<fpage>899</fpage>
<lpage>906</lpage>
<pub-id pub-id-type="pmid">11701617</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Maehara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yaoita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Maruyama</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Altered effects of angiotensin ii type 1 and type 2 receptor blockers on cardiac norepinephrine release and inotropic responses during cardiac sympathetic nerve stimulation in aorto-caval shunt rats</article-title>
<source>Circ J : Off J Jpn Circ Soc</source>
<year>2004</year>
<volume>68</volume>
<issue>7</issue>
<fpage>683</fpage>
<lpage>690</lpage>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohba</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Radovanovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ono</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iijima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy</article-title>
<source>Atherosclerosis</source>
<year>2007</year>
<volume>195</volume>
<issue>2</issue>
<fpage>287</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="pmid">17289052</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2015</year>
<volume>308</volume>
<issue>11</issue>
<fpage>C869</fpage>
<lpage>878</lpage>
<pub-id pub-id-type="pmid">25740156</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sweeney</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Platoshyn</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Landsberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rothman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>JX</given-names>
</name>
</person-group>
<article-title>PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2003</year>
<volume>284</volume>
<issue>2</issue>
<fpage>C316</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">12529250</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abkhezr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>EY</given-names>
</name>
<name>
<surname>Roshanravan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nikolos</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hagmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Benzing</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dryer</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Pleiotropic signaling evoked by tumor necrosis factor in podocytes</article-title>
<source>Am J Physiol Renal Physiol</source>
<year>2015</year>
<volume>309</volume>
<issue>2</issue>
<fpage>F98</fpage>
<lpage>f108</lpage>
<pub-id pub-id-type="pmid">26017975</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abkhezr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dryer</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Angiotensin II and canonical transient receptor potential-6 activation stimulate release of a signal transducer and activator of transcription 3-activating factor from mouse podocytes</article-title>
<source>Mol Pharmacol</source>
<year>2014</year>
<volume>86</volume>
<issue>2</issue>
<fpage>150</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">24850910</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xiong</surname>
<given-names>ZG</given-names>
</name>
</person-group>
<article-title>TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways</article-title>
<source>Cell Signal</source>
<year>2014</year>
<volume>26</volume>
<issue>12</issue>
<fpage>2773</fpage>
<lpage>2781</lpage>
<pub-id pub-id-type="pmid">25192910</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Azimi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Faville</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Jalink</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Putney</surname>
<given-names>JW</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Goodhill</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Roberts-Thomson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Monteith</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent</article-title>
<source>Oncogene</source>
<year>2014</year>
<volume>33</volume>
<issue>18</issue>
<fpage>2307</fpage>
<lpage>2316</lpage>
<pub-id pub-id-type="pmid">23686305</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Kashyap</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Pant</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>trans-Resveratrol protects ischemic PC12 Cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes</article-title>
<source>ACS Chem Neurosci</source>
<year>2013</year>
<volume>4</volume>
<issue>2</issue>
<fpage>285</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="pmid">23421680</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinuesa</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Sancho</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Garcia-Limones</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>A</given-names>
</name>
<name>
<surname>ten Dijke</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Calzado</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Munoz</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Vanilloid receptor-1 regulates neurogenic inflammation in colon and protects mice from colon cancer</article-title>
<source>Cancer Res</source>
<year>2012</year>
<volume>72</volume>
<issue>7</issue>
<fpage>1705</fpage>
<lpage>1716</lpage>
<pub-id pub-id-type="pmid">22396497</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hussain</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Inflammation and cancer: an ancient link with novel potentials</article-title>
<source>Int J Cancer J Int Du Cancer</source>
<year>2007</year>
<volume>121</volume>
<issue>11</issue>
<fpage>2373</fpage>
<lpage>2380</lpage>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ouyang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ghani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wilder</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Colegio</surname>
<given-names>OR</given-names>
</name>
<name>
<surname>Flavell</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Cronstein</surname>
<given-names>BN</given-names>
</name>
<name>
<surname>Mehal</surname>
<given-names>WZ</given-names>
</name>
</person-group>
<article-title>Adenosine is required for sustained inflammasome activation via the A(2)A receptor and the HIF-1alpha pathway</article-title>
<source>Nat Commun</source>
<year>2013</year>
<volume>4</volume>
<fpage>2909</fpage>
<pub-id pub-id-type="pmid">24352507</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Peroxisome proliferator-activated receptor gamma inhibits pulmonary hypertension targeting store-operated calcium entry</article-title>
<source>J Mol Med (Berlin, Germany)</source>
<year>2015</year>
<volume>93</volume>
<issue>3</issue>
<fpage>327</fpage>
<lpage>342</lpage>
</element-citation>
</ref>
<ref id="CR116">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asghar</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Magnusson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kemppainen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sukumaran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lof</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pulli</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kalhori</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Tornquist</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression: IMPLICATIONS FOR THYROID CANCER CELL MIGRATION AND PROLIFERATION</article-title>
<source>J Biol Chem</source>
<year>2015</year>
<volume>290</volume>
<issue>26</issue>
<fpage>16116</fpage>
<lpage>16131</lpage>
<pub-id pub-id-type="pmid">25971967</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Walton</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>McKown</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Raab</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Coffman</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Hussaini</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Laurie</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>Restricted epithelial proliferation by lacritin via PKCalpha-dependent NFAT and mTOR pathways</article-title>
<source>J Cell Biol</source>
<year>2006</year>
<volume>174</volume>
<issue>5</issue>
<fpage>689</fpage>
<lpage>700</lpage>
<pub-id pub-id-type="pmid">16923831</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Mild hypoxia-induced cardiomyocyte hypertrophy via up-regulation of HIF-1alpha-mediated TRPC signalling</article-title>
<source>J Cell Mol Med</source>
<year>2012</year>
<volume>16</volume>
<issue>9</issue>
<fpage>2022</fpage>
<lpage>2034</lpage>
<pub-id pub-id-type="pmid">22129453</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hua</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Enhancement of vascular endothelial growth factor release in long-term drug-treated breast cancer via transient receptor potential channel 5-Ca(2+)-hypoxia-inducible factor 1alpha pathway</article-title>
<source>Pharmacol Res</source>
<year>2015</year>
<volume>93</volume>
<fpage>36</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">25579062</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Crucial role of TRPC6 in maintaining the stability of HIF-1alpha in glioma cells under hypoxia</article-title>
<source>J Cell Sci</source>
<year>2015</year>
<volume>128</volume>
<issue>17</issue>
<fpage>3317</fpage>
<lpage>3329</lpage>
<pub-id pub-id-type="pmid">26187851</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iyer</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Kannan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gopal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Devaraj</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Halagowder</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition</article-title>
<source>Exp Cell Res</source>
<year>2015</year>
<volume>336</volume>
<issue>1</issue>
<fpage>66</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">25845497</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hirschler-Laszkiewicz</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>XQ</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Madesh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mallilankaraman</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Keefer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>JY</given-names>
</name>
</person-group>
<article-title>The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2013</year>
<volume>304</volume>
<issue>7</issue>
<fpage>H1010</fpage>
<lpage>1022</lpage>
<pub-id pub-id-type="pmid">23376831</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoolmeesters</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Fedorov</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Kinome-wide functional genomics screen reveals a novel mechanism of TNFalpha-induced nuclear accumulation of the HIF-1alpha transcription factor in cancer cells</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<issue>2</issue>
<pub-id pub-id-type="pmid">22355351</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>PG</given-names>
</name>
</person-group>
<article-title>Transcription factors of the NFAT family: regulation and function</article-title>
<source>Annu Rev Immunol</source>
<year>1997</year>
<volume>15</volume>
<fpage>707</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="pmid">9143705</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vandewalle</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tourneur</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bens</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chassin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Werts</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Calcineurin/NFAT signaling and innate host defence: a role for NOD1-mediated phagocytic functions</article-title>
<source>Cell Commun Signal : CCS</source>
<year>2014</year>
<volume>12</volume>
<fpage>8</fpage>
<pub-id pub-id-type="pmid">24479879</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inoue</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Honda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Transient receptor potential channels in cardiovascular function and disease</article-title>
<source>Circ Res</source>
<year>2006</year>
<volume>99</volume>
<issue>2</issue>
<fpage>119</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">16857972</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kurose</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Roles of TRP channels in the development of cardiac hypertrophy</article-title>
<source>Naunyn Schmiedeberg’s Arch Pharmacol</source>
<year>2008</year>
<volume>378</volume>
<issue>4</issue>
<fpage>395</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">18600314</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eder</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Molkentin</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>TRPC channels as effectors of cardiac hypertrophy</article-title>
<source>Circ Res</source>
<year>2011</year>
<volume>108</volume>
<issue>2</issue>
<fpage>265</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="pmid">21252153</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kockx</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jessup</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kritharides</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Cyclosporin A and atherosclerosis--cellular pathways in atherogenesis</article-title>
<source>Pharmacol Ther</source>
<year>2010</year>
<volume>128</volume>
<issue>1</issue>
<fpage>106</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">20598751</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zetterqvist</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Berglund</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Blanco</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Garcia-Vaz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wigren</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Duner</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>To</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Spegel</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bengtsson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Inhibition of nuclear factor of activated T-cells (NFAT) suppresses accelerated atherosclerosis in diabetic mice</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>8</volume>
<issue>6</issue>
<pub-id pub-id-type="pmid">23755169</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abkhezr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>EY</given-names>
</name>
<name>
<surname>Roshanravan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nikolos</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hagmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Benzing</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dryer</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>Pleiotropic signaling evoked by tumor necrosis factor in podocytes</article-title>
<source>Am J Physiol Renal Physiol</source>
<year>2015</year>
<volume>309</volume>
<issue>2</issue>
<fpage>F98</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">26017975</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makarewich</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Correll</surname>
<given-names>RN</given-names>
</name>
<name>
<surname>Trappanese</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Troupes</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Berretta</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Madesh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Molkentin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Houser</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction</article-title>
<source>Circ Res</source>
<year>2014</year>
<volume>115</volume>
<issue>6</issue>
<fpage>567</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="pmid">25047165</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Libby</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Inflammation in atherosclerosis</article-title>
<source>Arterioscler Thromb Vasc Biol</source>
<year>2012</year>
<volume>32</volume>
<issue>9</issue>
<fpage>2045</fpage>
<lpage>2051</lpage>
<pub-id pub-id-type="pmid">22895665</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vassalli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gallino</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>von Scheidt</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kappenberger</surname>
<given-names>L</given-names>
</name>
<name>
<surname>von Segesser</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Goy</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Alloimmunity and nonimmunologic risk factors in cardiac allograft vasculopathy</article-title>
<source>Eur Heart J</source>
<year>2003</year>
<volume>24</volume>
<issue>13</issue>
<fpage>1180</fpage>
<lpage>1188</lpage>
<pub-id pub-id-type="pmid">12831811</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perez-Ruiz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Inflammation: a possible mechanism for a causative role of hyperuricemia/gout in cardiovascular disease</article-title>
<source>Curr Med Res Opin</source>
<year>2015</year>
<volume>31</volume>
<issue>Suppl 2</issue>
<fpage>9</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">26414731</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frieler</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Mortensen</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling</article-title>
<source>Circulation</source>
<year>2015</year>
<volume>131</volume>
<issue>11</issue>
<fpage>1019</fpage>
<lpage>1030</lpage>
<pub-id pub-id-type="pmid">25779542</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kasahara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hirata</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Anti-inflammatory and immune-modulatory therapies for preventing atherosclerotic cardiovascular disease</article-title>
<source>J Cardiol</source>
<year>2015</year>
<volume>66</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">25744783</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>MU</given-names>
</name>
<name>
<surname>Wallace</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Pepe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menheniott</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Burgner D (2015) Perinatal inflammation: a common factor in the early origins of cardiovascular disease? Clinical science (London</article-title>
<source>England :</source>
<year>1979</year>
<volume>129</volume>
<issue>8</issue>
<fpage>769</fpage>
<lpage>784</lpage>
</element-citation>
</ref>
<ref id="CR139">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hollan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dessein</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Ronda</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wasko</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Svenungsson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Agewall</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cohen-Tervaert</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Maki-Petaja</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Grundtvig</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Karpouzas</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Meroni</surname>
<given-names>PL</given-names>
</name>
</person-group>
<article-title>Prevention of cardiovascular disease in rheumatoid arthritis</article-title>
<source>Autoimmun Rev</source>
<year>2015</year>
<volume>14</volume>
<issue>10</issue>
<fpage>952</fpage>
<lpage>969</lpage>
<pub-id pub-id-type="pmid">26117596</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Van den Steen</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Opdenakker</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Targeting matrix metalloproteinases in acute inflammatory shock syndromes</article-title>
<source>Comb Chem High Throughput Screen</source>
<year>2012</year>
<volume>15</volume>
<issue>7</issue>
<fpage>555</fpage>
<lpage>570</lpage>
<pub-id pub-id-type="pmid">22537195</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saxena</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Russo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Frangogiannis</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges</article-title>
<source>Transl Res J Lab Clin Med</source>
<year>2015</year>
</element-citation>
</ref>
<ref id="CR142">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vilahur</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Badimon</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor</article-title>
<source>Front Physiol</source>
<year>2014</year>
<volume>5</volume>
<fpage>496</fpage>
<pub-id pub-id-type="pmid">25566092</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bergdahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Wihlborg</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Erlinge</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Eyjolfson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Beech</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Dreja</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hellstrand</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry</article-title>
<source>Am J Physiol Cell Physiol</source>
<year>2005</year>
<volume>288</volume>
<issue>4</issue>
<fpage>C872</fpage>
<lpage>880</lpage>
<pub-id pub-id-type="pmid">15561760</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Neeb</surname>
<given-names>ZP</given-names>
</name>
<name>
<surname>Alloosh</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bratz</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Peller</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Byrd</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Obukhov</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Sturek</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis</article-title>
<source>Cardiovasc Res</source>
<year>2010</year>
<volume>85</volume>
<issue>3</issue>
<fpage>631</fpage>
<lpage>640</lpage>
<pub-id pub-id-type="pmid">19744946</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smedlund</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vazquez</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells</article-title>
<source>Arterioscler Thromb Vasc Biol</source>
<year>2008</year>
<volume>28</volume>
<issue>11</issue>
<fpage>2049</fpage>
<lpage>2055</lpage>
<pub-id pub-id-type="pmid">18787184</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smedlund</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Birnbaumer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vazquez</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2015</year>
<volume>112</volume>
<issue>17</issue>
<fpage>E2201</fpage>
<lpage>2206</lpage>
<pub-id pub-id-type="pmid">25870279</pub-id>
</element-citation>
</ref>
<ref id="CR147">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaudhuri</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Colles</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Bhat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Van Wagoner</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Birnbaumer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement</article-title>
<source>Mol Biol Cell</source>
<year>2008</year>
<volume>19</volume>
<issue>8</issue>
<fpage>3203</fpage>
<lpage>3211</lpage>
<pub-id pub-id-type="pmid">18495872</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis</article-title>
<source>Scientific reports</source>
<year>2015</year>
<volume>5</volume>
<fpage>9401</fpage>
<pub-id pub-id-type="pmid">25801675</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schilling</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eder</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Non-selective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration</article-title>
<source>J Cell Physiol</source>
<year>2009</year>
<volume>221</volume>
<issue>2</issue>
<fpage>325</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="pmid">19562685</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Himi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hamaguchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Narita</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyamoto</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Calcium influx through the TRPV1 channel of endothelial cells (ECs) correlates with a stronger adhesion between monocytes and ECs</article-title>
<source>Adv Med Sci</source>
<year>2012</year>
<volume>57</volume>
<issue>2</issue>
<fpage>224</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="pmid">23183769</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells</article-title>
<source>Cell Death Dis</source>
<year>2014</year>
<volume>5</volume>
<pub-id pub-id-type="pmid">24743737</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ching</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>YR</given-names>
</name>
<name>
<surname>Shyue</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>YB</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>TS</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1</article-title>
<source>Cardiovasc Res</source>
<year>2011</year>
<volume>91</volume>
<issue>3</issue>
<fpage>492</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="pmid">21493704</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Ching</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>YR</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shyue</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>TS</given-names>
</name>
</person-group>
<article-title>Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-alpha-induced inflammation in macrophages: role of liver X receptor alpha</article-title>
<source>Mediat Inflamm</source>
<year>2013</year>
<volume>2013</volume>
<fpage>925171</fpage>
</element-citation>
</ref>
<ref id="CR154">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dreja</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Cheong</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Sukumar</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Naylor</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Forte</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cipollaro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McHugh</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kingston</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Heagerty</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Munsch</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Bergdahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hultgardh-Nilsson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Hellstrand</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Beech</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia</article-title>
<source>Circ Res</source>
<year>2006</year>
<volume>98</volume>
<issue>4</issue>
<fpage>557</fpage>
<lpage>563</lpage>
<pub-id pub-id-type="pmid">16439693</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ru</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Transient receptor potential channel M2 contributes to neointimal hyperplasia in vascular walls</article-title>
<source>Biochim Biophys Acta</source>
<year>2015</year>
<volume>1852</volume>
<issue>7</issue>
<fpage>1360</fpage>
<lpage>1371</lpage>
<pub-id pub-id-type="pmid">25857618</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aihara</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bouryi</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Nikitina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jahromi</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>ZD</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Macdonald</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage</article-title>
<source>J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab</source>
<year>2007</year>
<volume>27</volume>
<issue>10</issue>
<fpage>1692</fpage>
<lpage>1701</lpage>
</element-citation>
</ref>
<ref id="CR157">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akabori</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tsuchihashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujino</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tani</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Transient receptor potential vanilloid 1 antagonist, capsazepine, improves survival in a rat hemorrhagic shock model</article-title>
<source>Ann Surg</source>
<year>2007</year>
<volume>245</volume>
<issue>6</issue>
<fpage>964</fpage>
<lpage>970</lpage>
<pub-id pub-id-type="pmid">17522523</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Intracellular calcium handling in ventricular myocytes from mdx mice</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2007</year>
<volume>292</volume>
<issue>2</issue>
<fpage>H846</fpage>
<lpage>855</lpage>
<pub-id pub-id-type="pmid">17012353</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedman</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Nitta</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Codianni</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ramiro-Diaz</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Giermakowska</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kanagy</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Gonzalez Bosc</surname>
<given-names>LV</given-names>
</name>
</person-group>
<article-title>Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity</article-title>
<source>Vasc Pharmacol</source>
<year>2014</year>
<volume>60</volume>
<issue>1</issue>
<fpage>17</fpage>
<lpage>24</lpage>
</element-citation>
</ref>
<ref id="CR160">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Burch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stiber</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tsiokas</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Winn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Abramowitz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rockman</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Birnbaumer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rosenberg</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>TRPC1 channels are critical for hypertrophic signaling in the heart</article-title>
<source>Circ Res</source>
<year>2009</year>
<volume>105</volume>
<issue>10</issue>
<fpage>1023</fpage>
<lpage>1030</lpage>
<pub-id pub-id-type="pmid">19797170</pub-id>
</element-citation>
</ref>
<ref id="CR161">
<label>161.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vindis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>D’Angelo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mucher</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Negre-Salvayre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Parini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mialet-Perez</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2010</year>
<volume>391</volume>
<issue>1</issue>
<fpage>979</fpage>
<lpage>983</lpage>
<pub-id pub-id-type="pmid">20005206</pub-id>
</element-citation>
</ref>
<ref id="CR162">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitajima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Morimoto</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kiyonaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hoshijima</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ide</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kurose</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2011</year>
<volume>409</volume>
<issue>1</issue>
<fpage>108</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="pmid">21565173</pub-id>
</element-citation>
</ref>
<ref id="CR163">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sowa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Horie</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kuwabara</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Baba</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nishi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kinoshita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takanabe-Mori</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shimatsu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ono</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>MicroRNA 26b encoded by the intron of small CTD phosphatase (SCP) 1 has an antagonistic effect on its host gene</article-title>
<source>J Cell Biochem</source>
<year>2012</year>
<volume>113</volume>
<issue>11</issue>
<fpage>3455</fpage>
<lpage>3465</lpage>
<pub-id pub-id-type="pmid">22678827</pub-id>
</element-citation>
</ref>
<ref id="CR164">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bush</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Hood</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Papst</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Chapo</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Minobe</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Bristow</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>McKinsey</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling</article-title>
<source>J Bio Chem</source>
<year>2006</year>
<volume>281</volume>
<issue>44</issue>
<fpage>33487</fpage>
<lpage>33496</lpage>
<pub-id pub-id-type="pmid">16950785</pub-id>
</element-citation>
</ref>
<ref id="CR165">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onohara</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sumimoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nagao</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kurose</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy</article-title>
<source>EMBO J</source>
<year>2006</year>
<volume>25</volume>
<issue>22</issue>
<fpage>5305</fpage>
<lpage>5316</lpage>
<pub-id pub-id-type="pmid">17082763</pub-id>
</element-citation>
</ref>
<ref id="CR166">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuwahara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>McAnally</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Bassel-Duby</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>EN</given-names>
</name>
</person-group>
<article-title>TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling</article-title>
<source>J Clin Invest</source>
<year>2006</year>
<volume>116</volume>
<issue>12</issue>
<fpage>3114</fpage>
<lpage>3126</lpage>
<pub-id pub-id-type="pmid">17099778</pub-id>
</element-citation>
</ref>
<ref id="CR167">
<label>167.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kinoshita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kuwahara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nishida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jian</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kiyonaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuwabara</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kurose</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Usami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ueshima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakao</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart</article-title>
<source>Circ Res</source>
<year>2010</year>
<volume>106</volume>
<issue>12</issue>
<fpage>1849</fpage>
<lpage>1860</lpage>
<pub-id pub-id-type="pmid">20448219</pub-id>
</element-citation>
</ref>
<ref id="CR168">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kunert-Keil</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Landsberger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jantzen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Niessner</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Felix</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Brinkmeier</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Molecular changes in the early phase of renin-dependent cardiac hypertrophy in hypertensive cyp1a1ren-2 transgenic rats</article-title>
<source>J Renin-Angiotensin-Aldosterone Syst : JRAAS</source>
<year>2013</year>
<volume>14</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">23060473</pub-id>
</element-citation>
</ref>
<ref id="CR169">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-delta Upregulation</article-title>
<source>PPAR Res</source>
<year>2014</year>
<volume>2014</volume>
<fpage>491963</fpage>
<pub-id pub-id-type="pmid">25152753</pub-id>
</element-citation>
</ref>
<ref id="CR170">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Dietary capsaicin ameliorates pressure overload-induced cardiac hypertrophy and fibrosis through the transient receptor potential vanilloid type 1</article-title>
<source>Am J Hypertens</source>
<year>2014</year>
<volume>27</volume>
<issue>12</issue>
<fpage>1521</fpage>
<lpage>1529</lpage>
<pub-id pub-id-type="pmid">24858305</pub-id>
</element-citation>
</ref>
<ref id="CR171">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohtake</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Komamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wakabayashi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy</article-title>
<source>Cardiovasc Res</source>
<year>2013</year>
<volume>99</volume>
<issue>4</issue>
<fpage>760</fpage>
<lpage>768</lpage>
<pub-id pub-id-type="pmid">23786999</pub-id>
</element-citation>
</ref>
<ref id="CR172">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demion</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thireau</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gueffier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Finan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Khoueiry</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cassan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Serafini</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Aimond</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Granier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pasquie</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Launay</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Richard</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>12</issue>
<pub-id pub-id-type="pmid">25531103</pub-id>
</element-citation>
</ref>
<ref id="CR173">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kecskes</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kerselaers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Syam</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Menigoz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vangheluwe</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Freichel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Flockerzi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Voets</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vennekens</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>The Ca(2+)-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy</article-title>
<source>Basic Res Cardiol</source>
<year>2015</year>
<volume>110</volume>
<issue>4</issue>
<fpage>43</fpage>
<pub-id pub-id-type="pmid">26043922</pub-id>
</element-citation>
</ref>
<ref id="CR174">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents</article-title>
<source>Int J Biol Sci</source>
<year>2015</year>
<volume>11</volume>
<issue>5</issue>
<fpage>536</fpage>
<lpage>545</lpage>
<pub-id pub-id-type="pmid">25892961</pub-id>
</element-citation>
</ref>
<ref id="CR175">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobs</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Oosterlinck</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Dresselaers</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Geenens</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kerselaers</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Himmelreich</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Herijgers</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Vennekens</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Enhanced beta-adrenergic cardiac reserve in Trpm4(−)/(−) mice with ischaemic heart failure</article-title>
<source>Cardiovasc Res</source>
<year>2015</year>
<volume>105</volume>
<issue>3</issue>
<fpage>330</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="pmid">25600961</pub-id>
</element-citation>
</ref>
<ref id="CR176">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Rubinstein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Prieto</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Enhanced postmyocardial infarction fibrosis via stimulation of the transforming growth factor-beta-Smad2 signaling pathway: role of transient receptor potential vanilloid type 1 channels</article-title>
<source>J Hypertens</source>
<year>2010</year>
<volume>28</volume>
<issue>2</issue>
<fpage>367</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="pmid">19887954</pub-id>
</element-citation>
</ref>
<ref id="CR177">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lupinski</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Schlicker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Pedzinska-Betiuk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Malinowska</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats</article-title>
<source>Pharmacol Rep : PR</source>
<year>2011</year>
<volume>63</volume>
<issue>6</issue>
<fpage>1450</fpage>
<lpage>1459</lpage>
<pub-id pub-id-type="pmid">22358093</pub-id>
</element-citation>
</ref>
<ref id="CR178">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Entin-Meer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Goryainov</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Landa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Barshack</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Avivi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Semo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Keren</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The transient receptor potential vanilloid 2 cation channel is abundant in macrophages accumulating at the peri-infarct zone and may enhance their migration capacity towards injured cardiomyocytes following myocardial infarction</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>8</issue>
<pub-id pub-id-type="pmid">25136832</pub-id>
</element-citation>
</ref>
<ref id="CR179">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sexton</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cayla</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Thiemermann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ahluwalia</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1</article-title>
<source>FASEB J : Off Publ Fed Am Soc Exp Biol</source>
<year>2007</year>
<volume>21</volume>
<issue>11</issue>
<fpage>2695</fpage>
<lpage>2703</lpage>
</element-citation>
</ref>
<ref id="CR180">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Protease-activated receptor 2-mediated protection of myocardial ischemia-reperfusion injury: role of transient receptor potential vanilloid receptors</article-title>
<source>Am J Physiol Regul, Integ Comp Physiol</source>
<year>2009</year>
<volume>297</volume>
<issue>6</issue>
<fpage>R1681</fpage>
<lpage>1690</lpage>
</element-citation>
</ref>
<ref id="CR181">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>ZW</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>SX</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>Nerve growth factor rescues diabetic mice heart after ischemia/reperfusion injury via up-regulation of the TRPV1 receptor</article-title>
<source>J Diabetes Complicat</source>
<year>2015</year>
<volume>29</volume>
<issue>3</issue>
<fpage>323</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="pmid">25650182</pub-id>
</element-citation>
</ref>
<ref id="CR182">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2015</year>
<volume>463</volume>
<issue>4</issue>
<fpage>1034</fpage>
<lpage>1039</lpage>
<pub-id pub-id-type="pmid">26079883</pub-id>
</element-citation>
</ref>
<ref id="CR183">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiroi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wajima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Negoro</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kiuchi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury</article-title>
<source>Cardiovasc Res</source>
<year>2013</year>
<volume>97</volume>
<issue>2</issue>
<fpage>271</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="pmid">23129587</pub-id>
</element-citation>
</ref>
<ref id="CR184">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberge</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roussel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Meli</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Blandel</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lanner</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Le Guennec</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Westerblad</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lacampagne</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fauconnier</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>TNF-alpha-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes</article-title>
<source>Cardiovasc Res</source>
<year>2014</year>
<volume>103</volume>
<issue>1</issue>
<fpage>90</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">24802330</pub-id>
</element-citation>
</ref>
<ref id="CR185">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Naruse</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Transient receptor potential melastatin-4 is involved in hypoxia-reoxygenation injury in the cardiomyocytes</article-title>
<source>PLoS One</source>
<year>2015</year>
<volume>10</volume>
<issue>4</issue>
<pub-id pub-id-type="pmid">25836769</pub-id>
</element-citation>
</ref>
<ref id="CR186">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Everett</surname>
<given-names>KV</given-names>
</name>
<name>
<surname>Chioza</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Georgoula</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Reece</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Capon</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Cord-Udy</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McKeigue</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mitton</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pierro</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Puri</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mitchison</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Gardiner</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23</article-title>
<source>Am J Hum Genet</source>
<year>2008</year>
<volume>82</volume>
<issue>3</issue>
<fpage>756</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="pmid">18308288</pub-id>
</element-citation>
</ref>
<ref id="CR187">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wick</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Knoflach</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kind</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bernhard</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Heat shock proteins and stress in atherosclerosis</article-title>
<source>Autoimmun Rev</source>
<year>2004</year>
<volume>3</volume>
<issue>Suppl 1</issue>
<fpage>S30</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">15309783</pub-id>
</element-citation>
</ref>
<ref id="CR188">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashiro</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sasano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tojo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Namekata</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kurokawa</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sawada</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Suganami</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kamei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tajima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Utsunomiya</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Furukawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2010</year>
<volume>398</volume>
<issue>2</issue>
<fpage>284</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="pmid">20599720</pub-id>
</element-citation>
</ref>
<ref id="CR189">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akazawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Komuro</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Cardiac nonmyocytes in the hub of cardiac hypertrophy</article-title>
<source>Circ Res</source>
<year>2015</year>
<volume>117</volume>
<issue>1</issue>
<fpage>89</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">26089366</pub-id>
</element-citation>
</ref>
<ref id="CR190">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levitsky</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Protecting the myocardial cell during coronary revascularization. The William W</article-title>
<source>L Glenn Lec Circ</source>
<year>2006</year>
<volume>114</volume>
<issue>1 Suppl</issue>
<fpage>I339</fpage>
<lpage>343</lpage>
</element-citation>
</ref>
<ref id="CR191">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaminski</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Bonda</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Korecki</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Musial</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Oxidative stress and neutrophil activation--the two keystones of ischemia/reperfusion injury</article-title>
<source>Int J Cardiol</source>
<year>2002</year>
<volume>86</volume>
<issue>1</issue>
<fpage>41</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">12243849</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000724  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000724  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024