Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.

Identifieur interne : 000C96 ( Ncbi/Merge ); précédent : 000C95; suivant : 000C97

Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.

Auteurs : Rocktotpal Konwarh [Inde] ; Biswajit Gogoi ; Ruby Philip ; M A Laskar ; Niranjan Karak

Source :

RBID : pubmed:21316933

English descriptors

Abstract

In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.

DOI: 10.1016/j.colsurfb.2011.01.024
PubMed: 21316933

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21316933

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.</title>
<author>
<name sortKey="Konwarh, Rocktotpal" sort="Konwarh, Rocktotpal" uniqKey="Konwarh R" first="Rocktotpal" last="Konwarh">Rocktotpal Konwarh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam-784028, Sonitpur District, Tezpur, Assam, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam-784028, Sonitpur District, Tezpur, Assam</wicri:regionArea>
<wicri:noRegion>Assam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gogoi, Biswajit" sort="Gogoi, Biswajit" uniqKey="Gogoi B" first="Biswajit" last="Gogoi">Biswajit Gogoi</name>
</author>
<author>
<name sortKey="Philip, Ruby" sort="Philip, Ruby" uniqKey="Philip R" first="Ruby" last="Philip">Ruby Philip</name>
</author>
<author>
<name sortKey="Laskar, M A" sort="Laskar, M A" uniqKey="Laskar M" first="M A" last="Laskar">M A Laskar</name>
</author>
<author>
<name sortKey="Karak, Niranjan" sort="Karak, Niranjan" uniqKey="Karak N" first="Niranjan" last="Karak">Niranjan Karak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21316933</idno>
<idno type="pmid">21316933</idno>
<idno type="doi">10.1016/j.colsurfb.2011.01.024</idno>
<idno type="wicri:Area/PubMed/Corpus">000735</idno>
<idno type="wicri:Area/PubMed/Curation">000735</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000735</idno>
<idno type="wicri:Area/Ncbi/Merge">000C96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.</title>
<author>
<name sortKey="Konwarh, Rocktotpal" sort="Konwarh, Rocktotpal" uniqKey="Konwarh R" first="Rocktotpal" last="Konwarh">Rocktotpal Konwarh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam-784028, Sonitpur District, Tezpur, Assam, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam-784028, Sonitpur District, Tezpur, Assam</wicri:regionArea>
<wicri:noRegion>Assam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gogoi, Biswajit" sort="Gogoi, Biswajit" uniqKey="Gogoi B" first="Biswajit" last="Gogoi">Biswajit Gogoi</name>
</author>
<author>
<name sortKey="Philip, Ruby" sort="Philip, Ruby" uniqKey="Philip R" first="Ruby" last="Philip">Ruby Philip</name>
</author>
<author>
<name sortKey="Laskar, M A" sort="Laskar, M A" uniqKey="Laskar M" first="M A" last="Laskar">M A Laskar</name>
</author>
<author>
<name sortKey="Karak, Niranjan" sort="Karak, Niranjan" uniqKey="Karak N" first="Niranjan" last="Karak">Niranjan Karak</name>
</author>
</analytic>
<series>
<title level="j">Colloids and surfaces. B, Biointerfaces</title>
<idno type="eISSN">1873-4367</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Infective Agents (chemistry)</term>
<term>Bacillus subtilis (drug effects)</term>
<term>Biomimetics</term>
<term>Cell Line, Tumor</term>
<term>Citrus sinensis (chemistry)</term>
<term>Free Radical Scavengers (chemistry)</term>
<term>Humans</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microscopy, Electron, Transmission</term>
<term>Models, Molecular</term>
<term>Plant Extracts (chemistry)</term>
<term>Polymers (chemistry)</term>
<term>Silver (chemistry)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Infective Agents</term>
<term>Free Radical Scavengers</term>
<term>Plant Extracts</term>
<term>Polymers</term>
<term>Silver</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Citrus sinensis</term>
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomimetics</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Microscopy, Electron, Transmission</term>
<term>Models, Molecular</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21316933</PMID>
<DateCreated>
<Year>2011</Year>
<Month>3</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4367</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Colloids and surfaces. B, Biointerfaces</Title>
<ISOAbbreviation>Colloids Surf B Biointerfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.</ArticleTitle>
<Pagination>
<MedlinePgn>338-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.colsurfb.2011.01.024</ELocationID>
<Abstract>
<AbstractText>In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Konwarh</LastName>
<ForeName>Rocktotpal</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam-784028, Sonitpur District, Tezpur, Assam, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gogoi</LastName>
<ForeName>Biswajit</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Philip</LastName>
<ForeName>Ruby</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laskar</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karak</LastName>
<ForeName>Niranjan</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>Jan</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Colloids Surf B Biointerfaces</MedlineTA>
<NlmUniqueID>9315133</NlmUniqueID>
<ISSNLinking>0927-7765</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000890">Anti-Infective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016166">Free Radical Scavengers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000890" MajorTopicYN="N">Anti-Infective Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032701" MajorTopicYN="Y">Biomimetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016166" MajorTopicYN="N">Free Radical Scavengers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>1</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21316933</ArticleId>
<ArticleId IdType="pii">S0927-7765(11)00044-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.colsurfb.2011.01.024</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gogoi, Biswajit" sort="Gogoi, Biswajit" uniqKey="Gogoi B" first="Biswajit" last="Gogoi">Biswajit Gogoi</name>
<name sortKey="Karak, Niranjan" sort="Karak, Niranjan" uniqKey="Karak N" first="Niranjan" last="Karak">Niranjan Karak</name>
<name sortKey="Laskar, M A" sort="Laskar, M A" uniqKey="Laskar M" first="M A" last="Laskar">M A Laskar</name>
<name sortKey="Philip, Ruby" sort="Philip, Ruby" uniqKey="Philip R" first="Ruby" last="Philip">Ruby Philip</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="Konwarh, Rocktotpal" sort="Konwarh, Rocktotpal" uniqKey="Konwarh R" first="Rocktotpal" last="Konwarh">Rocktotpal Konwarh</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000C96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21316933
   |texte=   Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial "green" silver nanoparticles using aqueous extract of Citrus sinensis peel.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21316933" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024