Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.

Identifieur interne : 001E06 ( Main/Exploration ); précédent : 001E05; suivant : 001E07

Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.

Auteurs : Junli Hu [République populaire de Chine] ; Shengchun Wu ; Fuyong Wu ; Ho Man Leung ; Xiangui Lin ; Ming Hung Wong

Source :

RBID : pubmed:24011894

Descripteurs français

English descriptors

Abstract

A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg(-1)) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot(-1)) was 4.3 times higher than that by ryegrass (1.5 μg pot(-1)). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21-38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.

DOI: 10.1016/j.chemosphere.2013.07.089
PubMed: 24011894


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.</title>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, PR China. Electronic address: jlhu@issas.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shengchun" sort="Wu, Shengchun" uniqKey="Wu S" first="Shengchun" last="Wu">Shengchun Wu</name>
</author>
<author>
<name sortKey="Wu, Fuyong" sort="Wu, Fuyong" uniqKey="Wu F" first="Fuyong" last="Wu">Fuyong Wu</name>
</author>
<author>
<name sortKey="Leung, Ho Man" sort="Leung, Ho Man" uniqKey="Leung H" first="Ho Man" last="Leung">Ho Man Leung</name>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
</author>
<author>
<name sortKey="Wong, Ming Hung" sort="Wong, Ming Hung" uniqKey="Wong M" first="Ming Hung" last="Wong">Ming Hung Wong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24011894</idno>
<idno type="pmid">24011894</idno>
<idno type="doi">10.1016/j.chemosphere.2013.07.089</idno>
<idno type="wicri:Area/Main/Corpus">001B11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B11</idno>
<idno type="wicri:Area/Main/Curation">001B11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B11</idno>
<idno type="wicri:Area/Main/Exploration">001B11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.</title>
<author>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, PR China. Electronic address: jlhu@issas.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Shengchun" sort="Wu, Shengchun" uniqKey="Wu S" first="Shengchun" last="Wu">Shengchun Wu</name>
</author>
<author>
<name sortKey="Wu, Fuyong" sort="Wu, Fuyong" uniqKey="Wu F" first="Fuyong" last="Wu">Fuyong Wu</name>
</author>
<author>
<name sortKey="Leung, Ho Man" sort="Leung, Ho Man" uniqKey="Leung H" first="Ho Man" last="Leung">Ho Man Leung</name>
</author>
<author>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
</author>
<author>
<name sortKey="Wong, Ming Hung" sort="Wong, Ming Hung" uniqKey="Wong M" first="Ming Hung" last="Wong">Ming Hung Wong</name>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Lolium (microbiology)</term>
<term>Lolium (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Sedum (microbiology)</term>
<term>Sedum (physiology)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Absorption (MeSH)</term>
<term>Cadmium (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Glomeromycota (physiologie)</term>
<term>Lolium (microbiologie)</term>
<term>Lolium (physiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Sedum (microbiologie)</term>
<term>Sedum (physiologie)</term>
<term>Sol (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lolium</term>
<term>Racines de plante</term>
<term>Sedum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lolium</term>
<term>Plant Roots</term>
<term>Sedum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Lolium</term>
<term>Mycorhizes</term>
<term>Sedum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Lolium</term>
<term>Mycorrhizae</term>
<term>Sedum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Absorption</term>
<term>Biodegradation, Environmental</term>
<term>Hydrogen-Ion Concentration</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Absorption</term>
<term>Concentration en ions d'hydrogène</term>
<term>Dépollution biologique de l'environnement</term>
<term>Microbiologie du sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg(-1)) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot(-1)) was 4.3 times higher than that by ryegrass (1.5 μg pot(-1)). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21-38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24011894</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.</ArticleTitle>
<Pagination>
<MedlinePgn>1359-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2013.07.089</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(13)01134-X</ELocationID>
<Abstract>
<AbstractText>A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg(-1)) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot(-1)) was 4.3 times higher than that by ryegrass (1.5 μg pot(-1)). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21-38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Junli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong Baptist University & Institute of Soil Science, Chinese Academy of Sciences, PR China. Electronic address: jlhu@issas.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Shengchun</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Fuyong</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leung</LastName>
<ForeName>Ho Man</ForeName>
<Initials>HM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Xiangui</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Ming Hung</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000042" MajorTopicYN="N">Absorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008129" MajorTopicYN="N">Lolium</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031963" MajorTopicYN="N">Sedum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DTPA-extractable Cd</Keyword>
<Keyword MajorTopicYN="N">Glomus caledonium</Keyword>
<Keyword MajorTopicYN="N">Glomus mosseae</Keyword>
<Keyword MajorTopicYN="N">Hyperaccumulator</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">Soil acid phosphatase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24011894</ArticleId>
<ArticleId IdType="pii">S0045-6535(13)01134-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2013.07.089</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Leung, Ho Man" sort="Leung, Ho Man" uniqKey="Leung H" first="Ho Man" last="Leung">Ho Man Leung</name>
<name sortKey="Lin, Xiangui" sort="Lin, Xiangui" uniqKey="Lin X" first="Xiangui" last="Lin">Xiangui Lin</name>
<name sortKey="Wong, Ming Hung" sort="Wong, Ming Hung" uniqKey="Wong M" first="Ming Hung" last="Wong">Ming Hung Wong</name>
<name sortKey="Wu, Fuyong" sort="Wu, Fuyong" uniqKey="Wu F" first="Fuyong" last="Wu">Fuyong Wu</name>
<name sortKey="Wu, Shengchun" sort="Wu, Shengchun" uniqKey="Wu S" first="Shengchun" last="Wu">Shengchun Wu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Junli" sort="Hu, Junli" uniqKey="Hu J" first="Junli" last="Hu">Junli Hu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24011894
   |texte=   Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24011894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020