Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).

Identifieur interne : 001E07 ( Main/Exploration ); précédent : 001E06; suivant : 001E08

Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).

Auteurs : Hui Tian [République populaire de Chine] ; Rhae A. Drijber ; Xiaolin Li ; Daniel N. Miller ; Brian J. Wienhold

Source :

RBID : pubmed:23467773

Descripteurs français

English descriptors

Abstract

Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26-135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in non-mycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma:Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3.

DOI: 10.1007/s00572-013-0491-1
PubMed: 23467773


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).</title>
<author>
<name sortKey="Tian, Hui" sort="Tian, Hui" uniqKey="Tian H" first="Hui" last="Tian">Hui Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Drijber, Rhae A" sort="Drijber, Rhae A" uniqKey="Drijber R" first="Rhae A" last="Drijber">Rhae A. Drijber</name>
</author>
<author>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
</author>
<author>
<name sortKey="Miller, Daniel N" sort="Miller, Daniel N" uniqKey="Miller D" first="Daniel N" last="Miller">Daniel N. Miller</name>
</author>
<author>
<name sortKey="Wienhold, Brian J" sort="Wienhold, Brian J" uniqKey="Wienhold B" first="Brian J" last="Wienhold">Brian J. Wienhold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23467773</idno>
<idno type="pmid">23467773</idno>
<idno type="doi">10.1007/s00572-013-0491-1</idno>
<idno type="wicri:Area/Main/Corpus">001C92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C92</idno>
<idno type="wicri:Area/Main/Curation">001C92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C92</idno>
<idno type="wicri:Area/Main/Exploration">001C92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).</title>
<author>
<name sortKey="Tian, Hui" sort="Tian, Hui" uniqKey="Tian H" first="Hui" last="Tian">Hui Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Drijber, Rhae A" sort="Drijber, Rhae A" uniqKey="Drijber R" first="Rhae A" last="Drijber">Rhae A. Drijber</name>
</author>
<author>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
</author>
<author>
<name sortKey="Miller, Daniel N" sort="Miller, Daniel N" uniqKey="Miller D" first="Daniel N" last="Miller">Daniel N. Miller</name>
</author>
<author>
<name sortKey="Wienhold, Brian J" sort="Wienhold, Brian J" uniqKey="Wienhold B" first="Brian J" last="Wienhold">Brian J. Wienhold</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphate Transport Proteins (genetics)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Species Specificity (MeSH)</term>
<term>Symbiosis (genetics)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (metabolism)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Phosphates (métabolisme)</term>
<term>Protéines de transport du phosphate (génétique)</term>
<term>Protéines de transport du phosphate (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Symbiose (génétique)</term>
<term>Transport biologique (MeSH)</term>
<term>Zea mays (génétique)</term>
<term>Zea mays (microbiologie)</term>
<term>Zea mays (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Symbiosis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Protéines de transport du phosphate</term>
<term>Protéines végétales</term>
<term>Symbiose</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Phosphate Transport Proteins</term>
<term>Phosphates</term>
<term>Plant Proteins</term>
<term>Protein Isoforms</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Mycorhizes</term>
<term>Phosphates</term>
<term>Protéines de transport du phosphate</term>
<term>Protéines végétales</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Regulation, Plant</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26-135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in non-mycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma:Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23467773</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).</ArticleTitle>
<Pagination>
<MedlinePgn>507-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-013-0491-1</ELocationID>
<Abstract>
<AbstractText>Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26-135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in non-mycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma:Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Drijber</LastName>
<ForeName>Rhae A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiaolin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Daniel N</ForeName>
<Initials>DN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wienhold</LastName>
<ForeName>Brian J</ForeName>
<Initials>BJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23467773</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-013-0491-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Mar;8(2):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jul;53(374):1593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):688-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):881-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jan;61(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):236-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Drijber, Rhae A" sort="Drijber, Rhae A" uniqKey="Drijber R" first="Rhae A" last="Drijber">Rhae A. Drijber</name>
<name sortKey="Li, Xiaolin" sort="Li, Xiaolin" uniqKey="Li X" first="Xiaolin" last="Li">Xiaolin Li</name>
<name sortKey="Miller, Daniel N" sort="Miller, Daniel N" uniqKey="Miller D" first="Daniel N" last="Miller">Daniel N. Miller</name>
<name sortKey="Wienhold, Brian J" sort="Wienhold, Brian J" uniqKey="Wienhold B" first="Brian J" last="Wienhold">Brian J. Wienhold</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tian, Hui" sort="Tian, Hui" uniqKey="Tian H" first="Hui" last="Tian">Hui Tian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23467773
   |texte=   Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23467773" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020