Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.

Identifieur interne : 003812 ( Main/Exploration ); précédent : 003811; suivant : 003813

Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.

Auteurs : Erik A. Hobbie [États-Unis] ; Fernando S. Sánchez ; Paul T. Rygiewicz

Source :

RBID : pubmed:15446705

Descripteurs français

English descriptors

Abstract

Stable isotopes in fruit bodies from field studies have been used to infer ectomycorrhizal or saprotrophic status and to understand carbon and nitrogen use, but few controlled culture studies have correlated source and fungal isotopic patterns. Here, we measured natural abundances of 15N and 13C in ten strains of ectomycorrhizal fungi and seven strains of saprotrophic fungi grown on agar with three different primary carbon sources: glucose, glucose plus malt extract, and potato dextrose agar. Eight fungal strains were also grown using position-specific, 13C-labelled glucose (C-1 through C-6 labelled). Most fungi resembled nitrogen sources in delta 15N, suggesting that growth on agar media minimizes isotopic fractionation on uptake compared to growth on liquid media, and that in general saprotrophic and mycorrhizal fungi process nitrogen similarly. Saprotrophic fungi were more depleted in 13C than ectomycorrhizal fungi on all media, presumably because of assimilation of 13C-depleted, agar-derived carbon. Results on 13C-enriched glucose indicated that saprotrophic fungi obtained up to 45 % of their carbon from the agar substrate. Fungi generally incorporated the individual carbon atoms of glucose in the order, C-4 < C-1 < C-2, C-3, C-5 < C-6, ranging from a mean of 9 % for the C-4 atom to 21 % for the C-6 atom. Based on these incorporation patterns and intramolecular 13C patterns within glucose, differential incorporation of carbon atoms within glucose among fungal taxa contributed less than 1% to isotopic differences among taxa, whereas isotopic fractionation among taxa during metabolism varied up to 4%. Parallel studies of 13C-enriched and natural abundance substrates were crucial to interpreting our results.

DOI: 10.1017/s0953756204000590
PubMed: 15446705


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.</title>
<author>
<name sortKey="Hobbie, Erik A" sort="Hobbie, Erik A" uniqKey="Hobbie E" first="Erik A" last="Hobbie">Erik A. Hobbie</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Research Council, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333, USA. erik.hobbie@unh.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Research Council, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Fernando S" sort="Sanchez, Fernando S" uniqKey="Sanchez F" first="Fernando S" last="Sánchez">Fernando S. Sánchez</name>
</author>
<author>
<name sortKey="Rygiewicz, Paul T" sort="Rygiewicz, Paul T" uniqKey="Rygiewicz P" first="Paul T" last="Rygiewicz">Paul T. Rygiewicz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15446705</idno>
<idno type="pmid">15446705</idno>
<idno type="doi">10.1017/s0953756204000590</idno>
<idno type="wicri:Area/Main/Corpus">003688</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003688</idno>
<idno type="wicri:Area/Main/Curation">003688</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003688</idno>
<idno type="wicri:Area/Main/Exploration">003688</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.</title>
<author>
<name sortKey="Hobbie, Erik A" sort="Hobbie, Erik A" uniqKey="Hobbie E" first="Erik A" last="Hobbie">Erik A. Hobbie</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Research Council, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333, USA. erik.hobbie@unh.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Research Council, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Fernando S" sort="Sanchez, Fernando S" uniqKey="Sanchez F" first="Fernando S" last="Sánchez">Fernando S. Sánchez</name>
</author>
<author>
<name sortKey="Rygiewicz, Paul T" sort="Rygiewicz, Paul T" uniqKey="Rygiewicz P" first="Paul T" last="Rygiewicz">Paul T. Rygiewicz</name>
</author>
</analytic>
<series>
<title level="j">Mycological research</title>
<idno type="ISSN">0953-7562</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (metabolism)</term>
<term>Glucose (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Champignons (croissance et développement)</term>
<term>Champignons (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Spécificité d'espèce (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Glucose</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Champignons</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Champignons</term>
<term>Glucose</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Isotopes de l'azote</term>
<term>Isotopes du carbone</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stable isotopes in fruit bodies from field studies have been used to infer ectomycorrhizal or saprotrophic status and to understand carbon and nitrogen use, but few controlled culture studies have correlated source and fungal isotopic patterns. Here, we measured natural abundances of 15N and 13C in ten strains of ectomycorrhizal fungi and seven strains of saprotrophic fungi grown on agar with three different primary carbon sources: glucose, glucose plus malt extract, and potato dextrose agar. Eight fungal strains were also grown using position-specific, 13C-labelled glucose (C-1 through C-6 labelled). Most fungi resembled nitrogen sources in delta 15N, suggesting that growth on agar media minimizes isotopic fractionation on uptake compared to growth on liquid media, and that in general saprotrophic and mycorrhizal fungi process nitrogen similarly. Saprotrophic fungi were more depleted in 13C than ectomycorrhizal fungi on all media, presumably because of assimilation of 13C-depleted, agar-derived carbon. Results on 13C-enriched glucose indicated that saprotrophic fungi obtained up to 45 % of their carbon from the agar substrate. Fungi generally incorporated the individual carbon atoms of glucose in the order, C-4 < C-1 < C-2, C-3, C-5 < C-6, ranging from a mean of 9 % for the C-4 atom to 21 % for the C-6 atom. Based on these incorporation patterns and intramolecular 13C patterns within glucose, differential incorporation of carbon atoms within glucose among fungal taxa contributed less than 1% to isotopic differences among taxa, whereas isotopic fractionation among taxa during metabolism varied up to 4%. Parallel studies of 13C-enriched and natural abundance substrates were crucial to interpreting our results.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15446705</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0953-7562</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>108</Volume>
<Issue>Pt 7</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycological research</Title>
<ISOAbbreviation>Mycol Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.</ArticleTitle>
<Pagination>
<MedlinePgn>725-36</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Stable isotopes in fruit bodies from field studies have been used to infer ectomycorrhizal or saprotrophic status and to understand carbon and nitrogen use, but few controlled culture studies have correlated source and fungal isotopic patterns. Here, we measured natural abundances of 15N and 13C in ten strains of ectomycorrhizal fungi and seven strains of saprotrophic fungi grown on agar with three different primary carbon sources: glucose, glucose plus malt extract, and potato dextrose agar. Eight fungal strains were also grown using position-specific, 13C-labelled glucose (C-1 through C-6 labelled). Most fungi resembled nitrogen sources in delta 15N, suggesting that growth on agar media minimizes isotopic fractionation on uptake compared to growth on liquid media, and that in general saprotrophic and mycorrhizal fungi process nitrogen similarly. Saprotrophic fungi were more depleted in 13C than ectomycorrhizal fungi on all media, presumably because of assimilation of 13C-depleted, agar-derived carbon. Results on 13C-enriched glucose indicated that saprotrophic fungi obtained up to 45 % of their carbon from the agar substrate. Fungi generally incorporated the individual carbon atoms of glucose in the order, C-4 < C-1 < C-2, C-3, C-5 < C-6, ranging from a mean of 9 % for the C-4 atom to 21 % for the C-6 atom. Based on these incorporation patterns and intramolecular 13C patterns within glucose, differential incorporation of carbon atoms within glucose among fungal taxa contributed less than 1% to isotopic differences among taxa, whereas isotopic fractionation among taxa during metabolism varied up to 4%. Parallel studies of 13C-enriched and natural abundance substrates were crucial to interpreting our results.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hobbie</LastName>
<ForeName>Erik A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>National Research Council, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333, USA. erik.hobbie@unh.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sánchez</LastName>
<ForeName>Fernando S</ForeName>
<Initials>FS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rygiewicz</LastName>
<ForeName>Paul T</ForeName>
<Initials>PT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mycol Res</MedlineTA>
<NlmUniqueID>8913481</NlmUniqueID>
<ISSNLinking>0953-7562</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15446705</ArticleId>
<ArticleId IdType="doi">10.1017/s0953756204000590</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Rygiewicz, Paul T" sort="Rygiewicz, Paul T" uniqKey="Rygiewicz P" first="Paul T" last="Rygiewicz">Paul T. Rygiewicz</name>
<name sortKey="Sanchez, Fernando S" sort="Sanchez, Fernando S" uniqKey="Sanchez F" first="Fernando S" last="Sánchez">Fernando S. Sánchez</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Hobbie, Erik A" sort="Hobbie, Erik A" uniqKey="Hobbie E" first="Erik A" last="Hobbie">Erik A. Hobbie</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003812 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003812 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15446705
   |texte=   Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15446705" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020