Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.

Identifieur interne : 003811 ( Main/Exploration ); précédent : 003810; suivant : 003812

Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.

Auteurs : Martin I. Bidartondo [États-Unis] ; Bastian Burghardt ; Gerhard Gebauer ; Thomas D. Bruns ; David J. Read

Source :

RBID : pubmed:15315895

Descripteurs français

English descriptors

Abstract

In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.

DOI: 10.1098/rspb.2004.2807
PubMed: 15315895
PubMed Central: PMC1691795


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.</title>
<author>
<name sortKey="Bidartondo, Martin I" sort="Bidartondo, Martin I" uniqKey="Bidartondo M" first="Martin I" last="Bidartondo">Martin I. Bidartondo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. m.bidartondo@kew.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Burghardt, Bastian" sort="Burghardt, Bastian" uniqKey="Burghardt B" first="Bastian" last="Burghardt">Bastian Burghardt</name>
</author>
<author>
<name sortKey="Gebauer, Gerhard" sort="Gebauer, Gerhard" uniqKey="Gebauer G" first="Gerhard" last="Gebauer">Gerhard Gebauer</name>
</author>
<author>
<name sortKey="Bruns, Thomas D" sort="Bruns, Thomas D" uniqKey="Bruns T" first="Thomas D" last="Bruns">Thomas D. Bruns</name>
</author>
<author>
<name sortKey="Read, David J" sort="Read, David J" uniqKey="Read D" first="David J" last="Read">David J. Read</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15315895</idno>
<idno type="pmid">15315895</idno>
<idno type="doi">10.1098/rspb.2004.2807</idno>
<idno type="pmc">PMC1691795</idno>
<idno type="wicri:Area/Main/Corpus">003706</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003706</idno>
<idno type="wicri:Area/Main/Curation">003706</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003706</idno>
<idno type="wicri:Area/Main/Exploration">003706</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.</title>
<author>
<name sortKey="Bidartondo, Martin I" sort="Bidartondo, Martin I" uniqKey="Bidartondo M" first="Martin I" last="Bidartondo">Martin I. Bidartondo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. m.bidartondo@kew.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Burghardt, Bastian" sort="Burghardt, Bastian" uniqKey="Burghardt B" first="Bastian" last="Burghardt">Bastian Burghardt</name>
</author>
<author>
<name sortKey="Gebauer, Gerhard" sort="Gebauer, Gerhard" uniqKey="Gebauer G" first="Gerhard" last="Gebauer">Gerhard Gebauer</name>
</author>
<author>
<name sortKey="Bruns, Thomas D" sort="Bruns, Thomas D" uniqKey="Bruns T" first="Thomas D" last="Bruns">Thomas D. Bruns</name>
</author>
<author>
<name sortKey="Read, David J" sort="Read, David J" uniqKey="Read D" first="David J" last="Read">David J. Read</name>
</author>
</analytic>
<series>
<title level="j">Proceedings. Biological sciences</title>
<idno type="ISSN">0962-8452</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Fungi (genetics)</term>
<term>Fungi (physiology)</term>
<term>Germany (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Oligonucleotides (MeSH)</term>
<term>Orchidaceae (physiology)</term>
<term>Photosynthesis (physiology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allemagne (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Analyse de variance (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Champignons (génétique)</term>
<term>Champignons (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Oligonucléotides (MeSH)</term>
<term>Orchidaceae (physiologie)</term>
<term>Photosynthèse (physiologie)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
<term>Nitrogen Isotopes</term>
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Germany</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
<term>Mycorhizes</term>
<term>Orchidaceae</term>
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Orchidaceae</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Base Sequence</term>
<term>Mass Spectrometry</term>
<term>Molecular Sequence Data</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
<term>Symbiosis</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allemagne</term>
<term>Analyse de séquence d'ADN</term>
<term>Analyse de variance</term>
<term>Arbres</term>
<term>Données de séquences moléculaires</term>
<term>Isotopes de l'azote</term>
<term>Isotopes du carbone</term>
<term>Oligonucléotides</term>
<term>Spectrométrie de masse</term>
<term>Spécificité d'espèce</term>
<term>Symbiose</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Allemagne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15315895</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0962-8452</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>271</Volume>
<Issue>1550</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings. Biological sciences</Title>
<ISOAbbreviation>Proc Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.</ArticleTitle>
<Pagination>
<MedlinePgn>1799-806</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bidartondo</LastName>
<ForeName>Martin I</ForeName>
<Initials>MI</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA. m.bidartondo@kew.org</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burghardt</LastName>
<ForeName>Bastian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gebauer</LastName>
<ForeName>Gerhard</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bruns</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Read</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Proc Biol Sci</MedlineTA>
<NlmUniqueID>101245157</NlmUniqueID>
<ISSNLinking>0962-8452</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005858" MajorTopicYN="N" Type="Geographic">Germany</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15315895</ArticleId>
<ArticleId IdType="doi">10.1098/rspb.2004.2807</ArticleId>
<ArticleId IdType="pii">MTY3JA9FHKATDCMA</ArticleId>
<ArticleId IdType="pmc">PMC1691795</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Sep 26;419(6905):389-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2003 Apr 22;270(1517):835-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Sep;11(9):1831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Sep;10(9):2285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Mar;11(3):557-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11918790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4510-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9114020</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bruns, Thomas D" sort="Bruns, Thomas D" uniqKey="Bruns T" first="Thomas D" last="Bruns">Thomas D. Bruns</name>
<name sortKey="Burghardt, Bastian" sort="Burghardt, Bastian" uniqKey="Burghardt B" first="Bastian" last="Burghardt">Bastian Burghardt</name>
<name sortKey="Gebauer, Gerhard" sort="Gebauer, Gerhard" uniqKey="Gebauer G" first="Gerhard" last="Gebauer">Gerhard Gebauer</name>
<name sortKey="Read, David J" sort="Read, David J" uniqKey="Read D" first="David J" last="Read">David J. Read</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Bidartondo, Martin I" sort="Bidartondo, Martin I" uniqKey="Bidartondo M" first="Martin I" last="Bidartondo">Martin I. Bidartondo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003811 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003811 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15315895
   |texte=   Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15315895" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020