Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

Identifieur interne : 001754 ( Main/Exploration ); précédent : 001753; suivant : 001755

The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

Auteurs : Monica Calvo-Polanco [Espagne] ; Sonia Molina ; Angel María Zamarre O ; Jose María García-Mina ; Ricardo Aroca

Source :

RBID : pubmed:24553847

Descripteurs français

English descriptors

Abstract

It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

DOI: 10.1093/pcp/pcu035
PubMed: 24553847


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.</title>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Molina, Sonia" sort="Molina, Sonia" uniqKey="Molina S" first="Sonia" last="Molina">Sonia Molina</name>
</author>
<author>
<name sortKey="Zamarre O, Angel Maria" sort="Zamarre O, Angel Maria" uniqKey="Zamarre O A" first="Angel María" last="Zamarre O">Angel María Zamarre O</name>
</author>
<author>
<name sortKey="Garcia Mina, Jose Maria" sort="Garcia Mina, Jose Maria" uniqKey="Garcia Mina J" first="Jose María" last="García-Mina">Jose María García-Mina</name>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24553847</idno>
<idno type="pmid">24553847</idno>
<idno type="doi">10.1093/pcp/pcu035</idno>
<idno type="wicri:Area/Main/Corpus">001945</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001945</idno>
<idno type="wicri:Area/Main/Curation">001945</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001945</idno>
<idno type="wicri:Area/Main/Exploration">001945</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.</title>
<author>
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Andalousie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Molina, Sonia" sort="Molina, Sonia" uniqKey="Molina S" first="Sonia" last="Molina">Sonia Molina</name>
</author>
<author>
<name sortKey="Zamarre O, Angel Maria" sort="Zamarre O, Angel Maria" uniqKey="Zamarre O A" first="Angel María" last="Zamarre O">Angel María Zamarre O</name>
</author>
<author>
<name sortKey="Garcia Mina, Jose Maria" sort="Garcia Mina, Jose Maria" uniqKey="Garcia Mina J" first="Jose María" last="García-Mina">Jose María García-Mina</name>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
</analytic>
<series>
<title level="j">Plant & cell physiology</title>
<idno type="eISSN">1471-9053</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Aquaporins (genetics)</term>
<term>Aquaporins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Ethylenes (metabolism)</term>
<term>Floods (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Serine (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Acides indolacétiques (métabolisme)</term>
<term>Aquaporines (génétique)</term>
<term>Aquaporines (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Glomeromycota (génétique)</term>
<term>Glomeromycota (métabolisme)</term>
<term>Glomeromycota (physiologie)</term>
<term>Inondations (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Lycopersicon esculentum (métabolisme)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaporins</term>
<term>Fungal Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Aquaporins</term>
<term>Ethylenes</term>
<term>Fungal Proteins</term>
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
<term>Serine</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Lycopersicon esculentum</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aquaporines</term>
<term>Glomeromycota</term>
<term>Lycopersicon esculentum</term>
<term>Mycorhizes</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Lycopersicon esculentum</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Acides indolacétiques</term>
<term>Aquaporines</term>
<term>Eau</term>
<term>Facteur de croissance végétal</term>
<term>Glomeromycota</term>
<term>Lycopersicon esculentum</term>
<term>Mycorhizes</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Sérine</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biological Transport</term>
<term>Floods</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Expression Regulation, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Data</term>
<term>Phosphorylation</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Inondations</term>
<term>Interactions hôte-pathogène</term>
<term>Phosphorylation</term>
<term>RT-PCR</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
<term>Séquence d'acides aminés</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24553847</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>05</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-9053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>55</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant & cell physiology</Title>
<ISOAbbreviation>Plant Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1017-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/pcp/pcu035</ELocationID>
<Abstract>
<AbstractText>It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Calvo-Polanco</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Molina</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zamarreño</LastName>
<ForeName>Angel María</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>García-Mina</LastName>
<ForeName>Jose María</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Cell Physiol</MedlineTA>
<NlmUniqueID>9430925</NlmUniqueID>
<ISSNLinking>0032-0781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6U1S09C61L</RegistryNumber>
<NameOfSubstance UI="C030737">indoleacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055868" MajorTopicYN="N">Floods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aquaporins</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Ethylene</Keyword>
<Keyword MajorTopicYN="N">IAA</Keyword>
<Keyword MajorTopicYN="N">Phosphorylation</Keyword>
<Keyword MajorTopicYN="N">Root hydraulic conductivity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24553847</ArticleId>
<ArticleId IdType="pii">pcu035</ArticleId>
<ArticleId IdType="doi">10.1093/pcp/pcu035</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Andalousie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<name sortKey="Garcia Mina, Jose Maria" sort="Garcia Mina, Jose Maria" uniqKey="Garcia Mina J" first="Jose María" last="García-Mina">Jose María García-Mina</name>
<name sortKey="Molina, Sonia" sort="Molina, Sonia" uniqKey="Molina S" first="Sonia" last="Molina">Sonia Molina</name>
<name sortKey="Zamarre O, Angel Maria" sort="Zamarre O, Angel Maria" uniqKey="Zamarre O A" first="Angel María" last="Zamarre O">Angel María Zamarre O</name>
</noCountry>
<country name="Espagne">
<region name="Andalousie">
<name sortKey="Calvo Polanco, Monica" sort="Calvo Polanco, Monica" uniqKey="Calvo Polanco M" first="Monica" last="Calvo-Polanco">Monica Calvo-Polanco</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001754 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001754 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24553847
   |texte=   The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24553847" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020